mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
a41b707919
* Setup general integral aprroximation algorithm template * feat: added integral approximation algorithm * updating DIRECTORY.md * feat: added integral approximation algorithm * test: added tests for integral approximation algorithm * docs: added comments and explanation for integral approximation algorithm * fix: updated for loop within algorithm * fix: data type conversions * Modified dividing by 2 Maintains functionality but dividing by 2 is easier to read/understand * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * fix: Apply suggestions from code review * feat: added Wikipedia link and detailed description * fix: Apply suggestions from code review * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * style: updated what the library/header is for * docs: Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * fix: changed int to uint64_t * Update math/integral_approximation.cpp Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Shiqi Sheng <shiqisheng00@gmail.com> Co-authored-by: David Leal <halfpacho@gmail.com>
126 lines
5.4 KiB
C++
126 lines
5.4 KiB
C++
/**
|
|
* @file
|
|
* @brief Compute integral approximation of the function using [Riemann sum](https://en.wikipedia.org/wiki/Riemann_sum)
|
|
* @details In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth-century German mathematician Bernhard Riemann.
|
|
* One very common application is approximating the area of functions or lines on a graph and the length of curves and other approximations.
|
|
* The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that form a region similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together.
|
|
* This approach can be used to find a numerical approximation for a definite integral even if the fundamental theorem of calculus does not make it easy to find a closed-form solution.
|
|
* Because the region filled by the small shapes is usually not the same shape as the region being measured, the Riemann sum will differ from the area being measured.
|
|
* This error can be reduced by dividing up the region more finely, using smaller and smaller shapes. As the shapes get smaller and smaller, the sum approaches the Riemann integral.
|
|
* \author [Benjamin Walton](https://github.com/bwalton24)
|
|
* \author [Shiqi Sheng](https://github.com/shiqisheng00)
|
|
*/
|
|
#include <cassert> /// for assert
|
|
#include <cmath> /// for mathematical functions
|
|
#include <functional> /// for passing in functions
|
|
#include <iostream> /// for IO operations
|
|
|
|
/**
|
|
* @namespace math
|
|
* @brief Mathematical functions
|
|
*/
|
|
namespace math {
|
|
/**
|
|
* @brief Computes integral approximation
|
|
* @param lb lower bound
|
|
* @param ub upper bound
|
|
* @param func function passed in
|
|
* @param delta
|
|
* @returns integral approximation of function from [lb, ub]
|
|
*/
|
|
double integral_approx(double lb, double ub,
|
|
const std::function<double(double)>& func,
|
|
double delta = .0001) {
|
|
double result = 0;
|
|
uint64_t numDeltas = static_cast<uint64_t>((ub - lb) / delta);
|
|
for (int i = 0; i < numDeltas; i++) {
|
|
double begin = lb + i * delta;
|
|
double end = lb + (i + 1) * delta;
|
|
result += delta * (func(begin) + func(end)) / 2;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief Wrapper to evaluate if the approximated
|
|
* value is within `.XX%` threshold of the exact value.
|
|
* @param approx aprroximate value
|
|
* @param exact expected value
|
|
* @param threshold values from [0, 1)
|
|
*/
|
|
void test_eval(double approx, double expected, double threshold) {
|
|
assert(approx >= expected * (1 - threshold));
|
|
assert(approx <= expected * (1 + threshold));
|
|
}
|
|
|
|
/**
|
|
* @brief Self-test implementations to
|
|
* test the `integral_approx` function.
|
|
*
|
|
* @returns `void`
|
|
*/
|
|
} // namespace math
|
|
|
|
static void test() {
|
|
double test_1 = math::integral_approx(
|
|
3.24, 7.56, [](const double x) { return log(x) + exp(x) + x; });
|
|
std::cout << "Test Case 1" << std::endl;
|
|
std::cout << "function: log(x) + e^x + x" << std::endl;
|
|
std::cout << "range: [3.24, 7.56]" << std::endl;
|
|
std::cout << "value: " << test_1 << std::endl;
|
|
math::test_eval(test_1, 1924.80384023549, .001);
|
|
std::cout << "Test 1 Passed!" << std::endl;
|
|
std::cout << "=====================" << std::endl;
|
|
|
|
double test_2 = math::integral_approx(0.023, 3.69, [](const double x) {
|
|
return x * x + cos(x) + exp(x) + log(x) * log(x);
|
|
});
|
|
std::cout << "Test Case 2" << std::endl;
|
|
std::cout << "function: x^2 + cos(x) + e^x + log^2(x)" << std::endl;
|
|
std::cout << "range: [.023, 3.69]" << std::endl;
|
|
std::cout << "value: " << test_2 << std::endl;
|
|
math::test_eval(test_2, 58.71291345202729, .001);
|
|
std::cout << "Test 2 Passed!" << std::endl;
|
|
std::cout << "=====================" << std::endl;
|
|
|
|
double test_3 = math::integral_approx(
|
|
10.78, 24.899, [](const double x) { return x * x * x - x * x + 378; });
|
|
std::cout << "Test Case 3" << std::endl;
|
|
std::cout << "function: x^3 - x^2 + 378" << std::endl;
|
|
std::cout << "range: [10.78, 24.899]" << std::endl;
|
|
std::cout << "value: " << test_3 << std::endl;
|
|
math::test_eval(test_3, 93320.65915078377, .001);
|
|
std::cout << "Test 3 Passed!" << std::endl;
|
|
std::cout << "=====================" << std::endl;
|
|
|
|
double test_4 = math::integral_approx(
|
|
.101, .505,
|
|
[](const double x) { return cos(x) * tan(x) * x * x + exp(x); },
|
|
.00001);
|
|
std::cout << "Test Case 4" << std::endl;
|
|
std::cout << "function: cos(x)*tan(x)*x^2 + e^x" << std::endl;
|
|
std::cout << "range: [.101, .505]" << std::endl;
|
|
std::cout << "value: " << test_4 << std::endl;
|
|
math::test_eval(test_4, 0.566485986311631, .001);
|
|
std::cout << "Test 4 Passed!" << std::endl;
|
|
std::cout << "=====================" << std::endl;
|
|
|
|
double test_5 = math::integral_approx(
|
|
-1, 1, [](const double x) { return exp(-1 / (x * x)); });
|
|
std::cout << "Test Case 5" << std::endl;
|
|
std::cout << "function: e^(-1/x^2)" << std::endl;
|
|
std::cout << "range: [-1, 1]" << std::endl;
|
|
std::cout << "value: " << test_5 << std::endl;
|
|
math::test_eval(test_5, 0.1781477117815607, .001);
|
|
std::cout << "Test 5 Passed!" << std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
test(); // run self-test implementations
|
|
return 0;
|
|
}
|