TheAlgorithms-C-Plus-Plus/Data Structure/AVLtree.cpp
ashwek df7cc5d4d0 Renamed Datastructures -> Data Structure
Following uniform naming convention in the repo
2019-02-10 20:02:33 +05:30

160 lines
3.0 KiB
C++

#include <iostream>
#include <queue>
using namespace std;
typedef struct node {
int data;
int height;
struct node* left;
struct node* right;
}node;
int max(int a, int b) {
return a > b ? a : b;
}
// Returns a new Node
node* createNode(int data) {
node *nn = new node();
nn->data = data;
nn->height = 0;
nn->left = NULL;
nn->right = NULL;
return nn;
}
// Returns height of tree
int height(node *root) {
if(root==NULL)
return 0;
return 1 + max(height(root->left), height(root->right));
}
// Returns difference between height of left and right subtree
int getBalance(node *root) {
return height(root->left) - height(root->right);
}
// Returns Node after Right Rotation
node* rightRotate(node *root) {
node *t = root->left;
node *u = t->right;
t->right = root;
root->left = u;
return t;
}
// Returns Node after Left Rotation
node* leftRotate(node *root) {
node *t = root->right;
node *u = t->left;
t->left = root;
root->right = u;
return t;
}
// Returns node with minimum value in the tree
node* minValue(node* root) {
if(root->left==NULL)
return root;
return minValue(root->left);
}
// Balanced Insertion
node* insert(node* root, int item) {
node *nn = createNode(item);
if(root == NULL)
return nn;
if(item<root->data)
root->left = insert(root->left, item);
else
root->right = insert(root->right, item);
int b = getBalance(root);
if(b>1) {
if(getBalance(root->left)<0)
root->left = leftRotate(root->left); // Left-Right Case
return rightRotate(root); // Left-Left Case
}
else if(b<-1) {
if(getBalance(root->right)>0)
root->right = rightRotate(root->right); // Right-Left Case
return leftRotate(root); // Right-Right Case
}
return root;
}
// Balanced Deletion
node* deleteNode(node *root, int key) {
if(root == NULL)
return root;
if(key < root->data)
root->left = deleteNode(root->left, key);
else if(key > root->data)
root->right = deleteNode(root->right, key);
else {
// Node to be deleted is leaf node or have only one Child
if(!root->right) {
node* temp = root->left;
delete(root);
root = NULL;
return temp;
}
else if(!root->left) {
node* temp = root->right;
delete(root);
root = NULL;
return temp;
}
// Node to be deleted have both left and right subtrees
node *temp = minValue(root->right);
root->data = temp->data;
root->right = deleteNode(root->right, temp->data);
}
// Balancing Tree after deletion
return root;
}
// LevelOrder (Breadth First Search)
void levelOrder(node* root) {
queue<node*> q;
q.push(root);
while(!q.empty()) {
root = q.front();
cout<<root->data<<" ";
q.pop();
if(root->left)
q.push(root->left);
if(root->right)
q.push(root->right);
}
}
int main() {
// Testing AVL Tree
node *root = NULL;
int i;
for(i = 1 ; i <= 7 ; i++)
root = insert(root, i);
cout<<"LevelOrder: ";
levelOrder(root);
root = deleteNode(root, 1); // Deleting key with value 1
cout<<"\nLevelOrder: ";
levelOrder(root);
root = deleteNode(root, 4); // Deletin key with value 4
cout<<"\nLevelOrder: ";
levelOrder(root);
return 0;
}