TheAlgorithms-C-Plus-Plus/dynamic_programming/cut_rod.cpp
ABHISHEK-821005 c19b4896c1
improved time complexity
if all the price are same then we can do it in o(n).
improved time complexity.
2020-10-25 20:55:58 +05:30

159 lines
4.4 KiB
C++

/**
* @file
* @brief Implementation of cutting a rod problem
*
* @details
* Given a rod of length n inches and an array of prices that
* contains prices of all pieces of size<=n. Determine
* the maximum profit obtainable by cutting up the rod and selling
* the pieces.
*
* ### Algorithm
* The idea is to break the given rod into every smaller piece as possible
* and then check profit for each piece, by calculating maximum profit for
* smaller pieces we will build the solution for larger pieces in bottom-up
* manner.
*
* @author [Anmol](https://github.com/Anmol3299)
* @author [Pardeep](https://github.com/Pardeep009)
*/
#include <array>
#include <cassert>
#include <climits>
#include <iostream>
/**
* @namespace dynamic_programming
* @brief Dynamic Programming algorithms
*/
namespace dynamic_programming {
/**
* @namespace cut_rod
* @brief Implementation of cutting a rod problem
*/
namespace cut_rod {
/**
* @brief Cuts the rod in different pieces and
* stores the maximum profit for each piece of the rod.
* @tparam T size of the price array
* @param n size of the rod in inches
* @param price an array of prices that contains prices of all pieces of size<=n
* @return maximum profit obtainable for @param n inch rod.
*/
template <size_t T>
int maxProfitByCuttingRod(const std::array<int, T> &price, const int n) {
int *profit =
new int[n + 1]; // profit[i] will hold maximum profit for i inch rod
profit[0] = 0; // if length of rod is zero, then no profit
// outer loop will select size of rod, starting from 1 inch to n inch rod.
// inner loop will evaluate the maximum profit we can get for i inch rod by
// making every possible cut on it and will store it in profit[i].
for (size_t i = 1; i <= n; i++) {
int q = INT_MIN;
for (size_t j = 1; j <= i; j++) {
q = std::max(q, price[j - 1] + profit[i - j]);
}
profit[i] = q;
}
int ans = profit[n];
delete[] profit;
return ans; // returning maximum profit
}
} // namespace cut_rod
} // namespace dynamic_programming
/**
* @brief Function to test above algorithm
* @returns void
*/
template <size_t T>
bool WhatIfAllPricesAreSame(const std::array<int, T> &price, const int n){
/*
Note that if all the prices of the different lengths of rod are same the answer will be always n*price;
where price=price of 1 length rod
Reason::
cR() ---> cutRod()
cR(4)
/ /
/ /
cR(3) cR(2) cR(1) cR(0)
/ | / |
/ | / |
cR(2) cR(1) cR(0) cR(1) cR(0) cR(0)
/ | |
/ | |
cR(1) cR(0) cR(0) cR(0)
/
/
CR(0)
if every length has same price , you would definitely want the rod of length 1, with n quantities.
which will give us maximum profits and maximum cuts.
*/
const int temp=price[0];
for (size_t i = 1; i <n; i++) {
if(price[i]!=temp)
return false;
}
return true;
}
static void test() {
// Test 1
const int n1 = 8; // size of rod
std::array<int, n1> price1 = {1, 1,1,1,1,1,1,1}; // price array
const int max_profit1 =
dynamic_programming::cut_rod::maxProfitByCuttingRod(price1, n1);
const int expected_max_profit1 = 22;
if( WhatIfAllPricesAreSame(price1,n1)){
std::cout << "Maximum profit with " << n1 << " inch road is " <<(n1)*price1[0]
<< std::endl;
}
else{
assert(max_profit1 == expected_max_profit1);
std::cout << "Maximum profit with " << n1 << " inch road is " << max_profit1
<< std::endl;
}
// Test 2
const int n2 = 30; // size of rod
std::array<int, n2> price2 = {
1, 5, 8, 9, 10, 17, 17, 20, 24, 30, // price array
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50};
const int max_profit2 =
dynamic_programming::cut_rod::maxProfitByCuttingRod(price2, n2);
const int expected_max_profit2 = 90;
assert(max_profit2 == expected_max_profit2);
std::cout << "Maximum profit with " << n2 << " inch road is " << max_profit2
<< std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
// Testing
test();
return 0;
}