TheAlgorithms-C-Plus-Plus/others/matrix_exponentiation.cpp
2020-04-18 10:43:43 +08:00

120 lines
2.7 KiB
C++

/*
Matrix Exponentiation.
The problem can be solved with DP but constraints are high.
ai = bi (for i <= k)
ai = c1*ai-1 + c2*ai-2 + ... + ck*ai-k (for i > k)
Taking the example of Fibonacci series, K=2
b1 = 1, b2=1
c1 = 1, c2=1
a = 0 1 1 2 ....
This way you can find the 10^18 fibonacci number%MOD.
I have given a general way to use it. The program takes the input of B and C
matrix.
Steps for Matrix Expo
1. Create vector F1 : which is the copy of B.
2. Create transpose matrix (Learn more about it on the internet)
3. Perform T^(n-1) [transpose matrix to the power n-1]
4. Multiply with F to get the last matrix of size (1xk).
The first element of this matrix is the required result.
*/
#include <iostream>
using std::cin;
using std::cout;
using std::vector;
#define ll int64_t
#define endl '\n'
#define pb push_back
#define MOD 1000000007
ll ab(ll x) { return x > 0LL ? x : -x; }
ll k;
vector<ll> a, b, c;
// To multiply 2 matrix
vector<vector<ll>> multiply(vector<vector<ll>> A, vector<vector<ll>> B) {
vector<vector<ll>> C(k + 1, vector<ll>(k + 1));
for (ll i = 1; i <= k; i++) {
for (ll j = 1; j <= k; j++) {
for (ll z = 1; z <= k; z++) {
C[i][j] = (C[i][j] + (A[i][z] * B[z][j]) % MOD) % MOD;
}
}
}
return C;
}
// computing power of a matrix
vector<vector<ll>> power(vector<vector<ll>> A, ll p) {
if (p == 1)
return A;
if (p % 2 == 1) {
return multiply(A, power(A, p - 1));
} else {
vector<vector<ll>> X = power(A, p / 2);
return multiply(X, X);
}
}
// main function
ll ans(ll n) {
if (n == 0)
return 0;
if (n <= k)
return b[n - 1];
// F1
vector<ll> F1(k + 1);
for (ll i = 1; i <= k; i++)
F1[i] = b[i - 1];
// Transpose matrix
vector<vector<ll>> T(k + 1, vector<ll>(k + 1));
for (ll i = 1; i <= k; i++) {
for (ll j = 1; j <= k; j++) {
if (i < k) {
if (j == i + 1)
T[i][j] = 1;
else
T[i][j] = 0;
continue;
}
T[i][j] = c[k - j];
}
}
// T^n-1
T = power(T, n - 1);
// T*F1
ll res = 0;
for (ll i = 1; i <= k; i++) {
res = (res + (T[1][i] * F1[i]) % MOD) % MOD;
}
return res;
}
// 1 1 2 3 5
int main() {
cin.tie(0);
cout.tie(0);
ll t;
cin >> t;
ll i, j, x;
while (t--) {
cin >> k;
for (i = 0; i < k; i++) {
cin >> x;
b.pb(x);
}
for (i = 0; i < k; i++) {
cin >> x;
c.pb(x);
}
cin >> x;
cout << ans(x) << endl;
b.clear();
c.clear();
}
return 0;
}