mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
120 lines
2.7 KiB
C++
120 lines
2.7 KiB
C++
/*
|
|
Matrix Exponentiation.
|
|
The problem can be solved with DP but constraints are high.
|
|
ai = bi (for i <= k)
|
|
ai = c1*ai-1 + c2*ai-2 + ... + ck*ai-k (for i > k)
|
|
Taking the example of Fibonacci series, K=2
|
|
b1 = 1, b2=1
|
|
c1 = 1, c2=1
|
|
a = 0 1 1 2 ....
|
|
This way you can find the 10^18 fibonacci number%MOD.
|
|
I have given a general way to use it. The program takes the input of B and C
|
|
matrix.
|
|
Steps for Matrix Expo
|
|
1. Create vector F1 : which is the copy of B.
|
|
2. Create transpose matrix (Learn more about it on the internet)
|
|
3. Perform T^(n-1) [transpose matrix to the power n-1]
|
|
4. Multiply with F to get the last matrix of size (1xk).
|
|
The first element of this matrix is the required result.
|
|
*/
|
|
|
|
#include <iostream>
|
|
using std::cin;
|
|
using std::cout;
|
|
using std::vector;
|
|
|
|
#define ll int64_t
|
|
#define endl '\n'
|
|
#define pb push_back
|
|
#define MOD 1000000007
|
|
ll ab(ll x) { return x > 0LL ? x : -x; }
|
|
ll k;
|
|
vector<ll> a, b, c;
|
|
|
|
// To multiply 2 matrix
|
|
vector<vector<ll>> multiply(vector<vector<ll>> A, vector<vector<ll>> B) {
|
|
vector<vector<ll>> C(k + 1, vector<ll>(k + 1));
|
|
for (ll i = 1; i <= k; i++) {
|
|
for (ll j = 1; j <= k; j++) {
|
|
for (ll z = 1; z <= k; z++) {
|
|
C[i][j] = (C[i][j] + (A[i][z] * B[z][j]) % MOD) % MOD;
|
|
}
|
|
}
|
|
}
|
|
return C;
|
|
}
|
|
|
|
// computing power of a matrix
|
|
vector<vector<ll>> power(vector<vector<ll>> A, ll p) {
|
|
if (p == 1)
|
|
return A;
|
|
if (p % 2 == 1) {
|
|
return multiply(A, power(A, p - 1));
|
|
} else {
|
|
vector<vector<ll>> X = power(A, p / 2);
|
|
return multiply(X, X);
|
|
}
|
|
}
|
|
|
|
// main function
|
|
ll ans(ll n) {
|
|
if (n == 0)
|
|
return 0;
|
|
if (n <= k)
|
|
return b[n - 1];
|
|
// F1
|
|
vector<ll> F1(k + 1);
|
|
for (ll i = 1; i <= k; i++)
|
|
F1[i] = b[i - 1];
|
|
|
|
// Transpose matrix
|
|
vector<vector<ll>> T(k + 1, vector<ll>(k + 1));
|
|
for (ll i = 1; i <= k; i++) {
|
|
for (ll j = 1; j <= k; j++) {
|
|
if (i < k) {
|
|
if (j == i + 1)
|
|
T[i][j] = 1;
|
|
else
|
|
T[i][j] = 0;
|
|
continue;
|
|
}
|
|
T[i][j] = c[k - j];
|
|
}
|
|
}
|
|
// T^n-1
|
|
T = power(T, n - 1);
|
|
|
|
// T*F1
|
|
ll res = 0;
|
|
for (ll i = 1; i <= k; i++) {
|
|
res = (res + (T[1][i] * F1[i]) % MOD) % MOD;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// 1 1 2 3 5
|
|
|
|
int main() {
|
|
cin.tie(0);
|
|
cout.tie(0);
|
|
ll t;
|
|
cin >> t;
|
|
ll i, j, x;
|
|
while (t--) {
|
|
cin >> k;
|
|
for (i = 0; i < k; i++) {
|
|
cin >> x;
|
|
b.pb(x);
|
|
}
|
|
for (i = 0; i < k; i++) {
|
|
cin >> x;
|
|
c.pb(x);
|
|
}
|
|
cin >> x;
|
|
cout << ans(x) << endl;
|
|
b.clear();
|
|
c.clear();
|
|
}
|
|
return 0;
|
|
}
|