mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
67 lines
1.7 KiB
C++
67 lines
1.7 KiB
C++
/// C++ Program to calculate number of divisors.
|
|
|
|
#include<iostream>
|
|
#include<vector>
|
|
|
|
/**
|
|
* This algorithm use the prime factorization approach.
|
|
* Any number can be written in multiplication of its prime factors.
|
|
* Let N = P1^E1 * P2^E2 ... Pk^Ek
|
|
* Therefore. number-of-divisors(N) = (E1+1) * (E2+1) ... (Ek+1).
|
|
* Where P1, P2 ... Pk are prime factors and E1, E2 ... Ek are exponents respectively.
|
|
*
|
|
* Example:-
|
|
* N = 36
|
|
* 36 = (3^2 * 2^2)
|
|
* number_of_positive_divisors(36) = (2+1) * (2+1) = 9.
|
|
* list of positive divisors of 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36.
|
|
*
|
|
* Similarly if N is -36 at that time number of positive divisors remain same.
|
|
*
|
|
* Example:-
|
|
* N = -36
|
|
* -36 = -1 * (3^2 * 2^2)
|
|
* number_of_positive_divisors(-36) = (2+1) * (2+1) = 9.
|
|
* list of positive divisors of -36 = 1, 2, 3, 4, 6, 9, 12, 18, 36.
|
|
*
|
|
**/
|
|
|
|
int number_of_positive_divisors(int n) {
|
|
std::vector<int> prime_exponent_count;
|
|
for (int i=2; i*i <= n; i++) {
|
|
int prime_count = 0;
|
|
while (n % i == 0) {
|
|
prime_count += 1;
|
|
n /= i;
|
|
}
|
|
if (prime_count != 0) {
|
|
prime_exponent_count.push_back(prime_count);
|
|
}
|
|
}
|
|
if (n > 1) {
|
|
prime_exponent_count.push_back(1);
|
|
}
|
|
|
|
int divisors_count = 1;
|
|
|
|
for (int i=0; i < prime_exponent_count.size(); i++) {
|
|
divisors_count = divisors_count * (prime_exponent_count[i]+1);
|
|
}
|
|
|
|
return divisors_count;
|
|
}
|
|
|
|
int main() {
|
|
int n;
|
|
std::cin >> n;
|
|
if (n < 0) {
|
|
n = -n;
|
|
}
|
|
if (n == 0) {
|
|
std::cout << "All non-zero numbers are divisors of 0 !" << std::endl;
|
|
} else {
|
|
std::cout << "Number of positive divisors is : ";
|
|
std::cout << number_of_positive_divisors(n) << std::endl;
|
|
}
|
|
}
|