TheAlgorithms-C-Plus-Plus/numerical_methods/false_position.cpp
samruddha patil 0c22356706
feat/fix: Improve numerical_methods/false_position.cpp (#1321)
* Update false_position.cpp

* Update false_position.cpp

* Update false_position.cpp

* Update false_position.cpp

* Improve numerical_methods/false_position.cpp

* Improve numerical_methods/false_position.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Improve numerical_methods/false_position.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Improve numerical_methods/false_position.cpp

* Improve numerical_methods/false_position.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Improve numerical_methods/false_position.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Improve numerical_methods/false_position.cpp

* Improve numerical_methods/false_position.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>
2020-10-30 17:04:33 +05:30

130 lines
3.7 KiB
C++

/**
* \file
* \brief Solve the equation \f$f(x)=0\f$ using [false position
* method](https://en.wikipedia.org/wiki/Regula_falsi), also known as the Secant
* method
*
* \details
* First, multiple intervals are selected with the interval gap provided.
* Separate recursive function called for every root.
* Roots are printed Separatelt.
*
* For an interval [a,b] \f$a\f$ and \f$b\f$ such that \f$f(a)<0\f$ and
* \f$f(b)>0\f$, then the \f$(i+1)^\text{th}\f$ approximation is given by: \f[
* x_{i+1} = \frac{a_i\cdot f(b_i) - b_i\cdot f(a_i)}{f(b_i) - f(a_i)}
* \f]
* For the next iteration, the interval is selected
* as: \f$[a,x]\f$ if \f$x>0\f$ or \f$[x,b]\f$ if \f$x<0\f$. The Process is
* continued till a close enough approximation is achieved.
*
* \see newton_raphson_method.cpp, bisection_method.cpp
*
* \author Unknown author
* \author [Samruddha Patil](https://github.com/sampatil578)
*/
#include <cmath> /// for math operations
#include <iostream> /// for io operations
/**
* @namespace numerical_methods
* @brief Numerical methods
*/
namespace numerical_methods {
/**
* @namespace false_position
* @brief Functions for [False Position]
* (https://en.wikipedia.org/wiki/Regula_falsi) method.
*/
namespace false_position {
/**
* @brief This function gives the value of f(x) for given x.
* @param x value for which we have to find value of f(x).
* @return value of f(x) for given x.
*/
static float eq(float x) {
return (x*x-x); // original equation
}
/**
* @brief This function finds root of the equation in given interval i.e. (x1,x2).
* @param x1,x2 values for an interval in which root is present.
@param y1,y2 values of function at x1, x2 espectively.
* @return root of the equation in the given interval.
*/
static float regula_falsi(float x1,float x2,float y1,float y2){
float diff = x1-x2;
if(diff<0){
diff= (-1)*diff;
}
if(diff<0.00001){
if (y1<0) {
y1=-y1;
}
if (y2<0) {
y2=-y2;
}
if (y1<y2) {
return x1;
}
else {
return x2;
}
}
float x3=0,y3=0;
x3 = x1 - (x1-x2)*(y1)/(y1-y2);
y3 = eq(x3);
return regula_falsi(x2,x3,y2,y3);
}
/**
* @brief This function prints roots of the equation.
* @param root which we have to print.
* @param count which is count of the root in an interval [-range,range].
*/
void printRoot(float root, const int16_t &count){
if(count==1){
std::cout << "Your 1st root is : " << root << std::endl;
}
else if(count==2){
std::cout << "Your 2nd root is : " << root << std::endl;
}
else if(count==3){
std::cout << "Your 3rd root is : " << root << std::endl;
}
else{
std::cout << "Your "<<count<<"th root is : " << root << std::endl;
}
}
} // namespace false_position
} // namespace numerical_methods
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
float a=0, b=0,i=0,root=0;
int16_t count=0;
float range = 100000; //Range in which we have to find the root. (-range,range)
float gap = 0.5; // interval gap. lesser the gap more the accuracy
a = numerical_methods::false_position::eq((-1)*range);
i=((-1)*range + gap);
//while loop for selecting proper interval in provided range and with provided interval gap.
while(i<=range){
b = numerical_methods::false_position::eq(i);
if(b==0){
count++;
numerical_methods::false_position::printRoot(i,count);
}
if(a*b<0){
root = numerical_methods::false_position::regula_falsi(i-gap,i,a,b);
count++;
numerical_methods::false_position::printRoot(root,count);
}
a=b;
i+=gap;
}
return 0;
}