mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
8a6f2052e2
* Created composite Simpson's numerical integration method * Created midpoint numerical integration method * Corrections * Midpoint method * Improved Documentation * added namespace numerical_methods * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * updating DIRECTORY.md * clang-format and clang-tidy fixes forec5e0cce
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for7f16cc14
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update midpoint_integral_method.cpp * All changes have been applied * clang-format and clang-tidy fixes for6617e060
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes fora5a50f89
* Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for4c60e180
* Create midpoint_integral_method.cpp * Update numerical_methods/midpoint_integral_method.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for27f76052
* Update midpoint_integral_method.cpp Co-authored-by: ggkogkou <ggkogkou@ggkogkou.gr> Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
200 lines
7.4 KiB
C++
200 lines
7.4 KiB
C++
/**
|
|
* @file
|
|
* @brief A numerical method for easy [approximation of
|
|
* integrals](https://en.wikipedia.org/wiki/Midpoint_method)
|
|
* @details The idea is to split the interval into N of intervals and use as
|
|
* interpolation points the xi for which it applies that xi = x0 + i*h, where h
|
|
* is a step defined as h = (b-a)/N where a and b are the first and last points
|
|
* of the interval of the integration [a, b].
|
|
*
|
|
* We create a table of the xi and their corresponding f(xi) values and we
|
|
* evaluate the integral by the formula: I = h * {f(x0+h/2) + f(x1+h/2) + ... +
|
|
* f(xN-1+h/2)}
|
|
*
|
|
* Arguments can be passed as parameters from the command line argv[1] = N,
|
|
* argv[2] = a, argv[3] = b. In this case if the default values N=16, a=1, b=3
|
|
* are changed then the tests/assert are disabled.
|
|
*
|
|
*
|
|
* @author [ggkogkou](https://github.com/ggkogkou)
|
|
*/
|
|
#include <cassert> /// for assert
|
|
#include <cmath> /// for math functions
|
|
#include <cstdint> /// for integer allocation
|
|
#include <cstdlib> /// for std::atof
|
|
#include <functional> /// for std::function
|
|
#include <iostream> /// for IO operations
|
|
#include <map> /// for std::map container
|
|
|
|
/**
|
|
* @namespace numerical_methods
|
|
* @brief Numerical algorithms/methods
|
|
*/
|
|
namespace numerical_methods {
|
|
/**
|
|
* @namespace midpoint_rule
|
|
* @brief Functions for the [Midpoint
|
|
* Integral](https://en.wikipedia.org/wiki/Midpoint_method) method
|
|
* implementation
|
|
*/
|
|
namespace midpoint_rule {
|
|
/**
|
|
* @fn double midpoint(const std::int32_t N, const double h, const double a,
|
|
* const std::function<double (double)>& func)
|
|
* @brief Main function for implementing the Midpoint Integral Method
|
|
* implementation
|
|
* @param N is the number of intervals
|
|
* @param h is the step
|
|
* @param a is x0
|
|
* @param func is the function that will be integrated
|
|
* @returns the result of the integration
|
|
*/
|
|
double midpoint(const std::int32_t N, const double h, const double a,
|
|
const std::function<double(double)>& func) {
|
|
std::map<int, double>
|
|
data_table; // Contains the data points, key: i, value: f(xi)
|
|
double xi = a; // Initialize xi to the starting point x0 = a
|
|
|
|
// Create the data table
|
|
// Loop from x0 to xN-1
|
|
double temp = NAN;
|
|
for (std::int32_t i = 0; i < N; i++) {
|
|
temp = func(xi + h / 2); // find f(xi+h/2)
|
|
data_table.insert(
|
|
std::pair<std::int32_t, double>(i, temp)); // add i and f(xi)
|
|
xi += h; // Get the next point xi for the next iteration
|
|
}
|
|
|
|
// Evaluate the integral.
|
|
// Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
|
|
double evaluate_integral = 0;
|
|
for (std::int32_t i = 0; i < N; i++) evaluate_integral += data_table.at(i);
|
|
|
|
// Multiply by the coefficient h
|
|
evaluate_integral *= h;
|
|
|
|
// If the result calculated is nan, then the user has given wrong input
|
|
// interval.
|
|
assert(!std::isnan(evaluate_integral) &&
|
|
"The definite integral can't be evaluated. Check the validity of "
|
|
"your input.\n");
|
|
// Else return
|
|
return evaluate_integral;
|
|
}
|
|
|
|
/**
|
|
* @brief A function f(x) that will be used to test the method
|
|
* @param x The independent variable xi
|
|
* @returns the value of the dependent variable yi = f(xi) = sqrt(xi) + ln(xi)
|
|
*/
|
|
double f(double x) { return std::sqrt(x) + std::log(x); }
|
|
/**
|
|
* @brief A function g(x) that will be used to test the method
|
|
* @param x The independent variable xi
|
|
* @returns the value of the dependent variable yi = g(xi) = e^(-xi) * (4 -
|
|
* xi^2)
|
|
*/
|
|
double g(double x) { return std::exp(-x) * (4 - std::pow(x, 2)); }
|
|
/**
|
|
* @brief A function k(x) that will be used to test the method
|
|
* @param x The independent variable xi
|
|
* @returns the value of the dependent variable yi = k(xi) = sqrt(2*xi^3 + 3)
|
|
*/
|
|
double k(double x) { return std::sqrt(2 * std::pow(x, 3) + 3); }
|
|
/**
|
|
* @brief A function l(x) that will be used to test the method
|
|
* @param x The independent variable xi
|
|
* @returns the value of the dependent variable yi = l(xi) = xi + ln(2*xi + 1)
|
|
*/
|
|
double l(double x) { return x + std::log(2 * x + 1); }
|
|
|
|
} // namespace midpoint_rule
|
|
} // namespace numerical_methods
|
|
|
|
/**
|
|
* @brief Self-test implementations
|
|
* @param N is the number of intervals
|
|
* @param h is the step
|
|
* @param a is x0
|
|
* @param b is the end of the interval
|
|
* @param used_argv_parameters is 'true' if argv parameters are given and
|
|
* 'false' if not
|
|
*/
|
|
static void test(std::int32_t N, double h, double a, double b,
|
|
bool used_argv_parameters) {
|
|
// Call midpoint() for each of the test functions f, g, k, l
|
|
// Assert with two decimal point precision
|
|
double result_f = numerical_methods::midpoint_rule::midpoint(
|
|
N, h, a, numerical_methods::midpoint_rule::f);
|
|
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) &&
|
|
"The result of f(x) is wrong");
|
|
std::cout << "The result of integral f(x) on interval [" << a << ", " << b
|
|
<< "] is equal to: " << result_f << std::endl;
|
|
|
|
double result_g = numerical_methods::midpoint_rule::midpoint(
|
|
N, h, a, numerical_methods::midpoint_rule::g);
|
|
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) &&
|
|
"The result of g(x) is wrong");
|
|
std::cout << "The result of integral g(x) on interval [" << a << ", " << b
|
|
<< "] is equal to: " << result_g << std::endl;
|
|
|
|
double result_k = numerical_methods::midpoint_rule::midpoint(
|
|
N, h, a, numerical_methods::midpoint_rule::k);
|
|
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) &&
|
|
"The result of k(x) is wrong");
|
|
std::cout << "The result of integral k(x) on interval [" << a << ", " << b
|
|
<< "] is equal to: " << result_k << std::endl;
|
|
|
|
double result_l = numerical_methods::midpoint_rule::midpoint(
|
|
N, h, a, numerical_methods::midpoint_rule::l);
|
|
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) &&
|
|
"The result of l(x) is wrong");
|
|
std::cout << "The result of integral l(x) on interval [" << a << ", " << b
|
|
<< "] is equal to: " << result_l << std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @param argc commandline argument count (ignored)
|
|
* @param argv commandline array of arguments (ignored)
|
|
* @returns 0 on exit
|
|
*/
|
|
int main(int argc, char** argv) {
|
|
std::int32_t N =
|
|
16; /// Number of intervals to divide the integration interval.
|
|
/// MUST BE EVEN
|
|
double a = 1, b = 3; /// Starting and ending point of the integration in
|
|
/// the real axis
|
|
double h = NAN; /// Step, calculated by a, b and N
|
|
|
|
bool used_argv_parameters =
|
|
false; // If argv parameters are used then the assert must be omitted
|
|
// for the test cases
|
|
|
|
// Get user input (by the command line parameters or the console after
|
|
// displaying messages)
|
|
if (argc == 4) {
|
|
N = std::atoi(argv[1]);
|
|
a = std::atof(argv[2]);
|
|
b = std::atof(argv[3]);
|
|
// Check if a<b else abort
|
|
assert(a < b && "a has to be less than b");
|
|
assert(N > 0 && "N has to be > 0");
|
|
if (N < 4 || a != 1 || b != 3) {
|
|
used_argv_parameters = true;
|
|
}
|
|
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b
|
|
<< std::endl;
|
|
} else {
|
|
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b
|
|
<< std::endl;
|
|
}
|
|
|
|
// Find the step
|
|
h = (b - a) / N;
|
|
|
|
test(N, h, a, b, used_argv_parameters); // run self-test implementations
|
|
|
|
return 0;
|
|
}
|