TheAlgorithms-C-Plus-Plus/math/modular_exponentiation.cpp
2020-10-20 13:10:44 +05:30

75 lines
1.6 KiB
C++

/**
* @file
* @brief C++ Program for Modular Exponentiation Iteratively.
* Calculate the value of an integer a raised to an integer exponent b
* under modulo c.
* @note The time complexity of this approach is O(log b).
*
* Example:
* (4^3) % 5 (where ^ stands for exponentiation and % for modulo)
* (4*4*4) % 5
* (4 % 5) * ( (4*4) % 5 )
* 4 * (16 % 5)
* 4 * 1
* 4
* We can also verify the result as 4^3 is 64 and 64 modulo 5 is 4
*/
#include <iostream>
/**
* @brief This function calculates a raised to exponent b
* under modulo c using modular exponentiation.
* @param a integer base
* @param b unsigned integer exponent
* @param c integer modulo
* @return a raised to power b modulo c.
*/
int power(int a, unsigned int b, int c)
{
int ans = 1; /// Initialize the answer to be returned
a = a % c; /// Update a if it is more than or
/// equal to c
if (a == 0)
{
return 0; /// In case a is divisible by c;
}
while (b > 0)
{
/// If b is odd, multiply a with answer
if (b & 1)
{
ans = (ans*a) % c;
}
/// b must be even now
b = b>>1; // b = b/2
a = (a*a) % c;
}
return ans;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main()
{
/// Give two numbers num1, num2 and modulo m
int num1 = 2;
int num2 = 5;
int m = 13;
std::cout << "The value of "<<num1<<" raised to exponent "<<num2<<
" under modulo "<<m<<" is " << power(num1, num2, m);
/// std::cout << "The value of "<<num1<<" raised to exponent "<<num2<<"
/// " under modulo "<<m<<" is " << power(num1, num2, m);
return 0;
}