mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
124 lines
3.1 KiB
C++
124 lines
3.1 KiB
C++
/**
|
||
* @file n_queens.cpp
|
||
* @brief [Eight Queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle)
|
||
* puzzle
|
||
*
|
||
* @details
|
||
* The **eight queens puzzle** is the problem of placing eight chess queens on
|
||
* an 8×8 chessboard so that no two queens threaten each other; thus, a solution
|
||
* requires that no two queens share the same row, column, or diagonal. The
|
||
* eight queens puzzle is an example of the more general **n queens problem** of
|
||
* placing n non-attacking queens on an n×n chessboard, for which solutions
|
||
* exist for all natural numbers n with the exception of n = 2 and n = 3.
|
||
*
|
||
* @author Unknown author
|
||
* @author [David Leal](https://github.com/Panquesito7)
|
||
*
|
||
*/
|
||
#include <iostream>
|
||
#include <array>
|
||
|
||
/**
|
||
* @namespace backtracking
|
||
* @brief Backtracking algorithms
|
||
*/
|
||
namespace backtracking {
|
||
/**
|
||
* Utility function to print matrix
|
||
* @tparam n number of matrix size
|
||
* @param board matrix where numbers are saved
|
||
*/
|
||
template <size_t n>
|
||
void printSolution(const std::array<std::array<int, n>, n> &board) {
|
||
std::cout << "\n";
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
std::cout << "" << board[i][j] << " ";
|
||
}
|
||
std::cout << "\n";
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Check if a queen can be placed on matrix
|
||
* @tparam n number of matrix size
|
||
* @param board matrix where numbers are saved
|
||
* @param row current index in rows
|
||
* @param col current index in columns
|
||
* @returns `true` if queen can be placed on matrix
|
||
* @returns `false` if queen can't be placed on matrix
|
||
*/
|
||
template <size_t n>
|
||
bool isSafe(const std::array<std::array<int, n>, n> &board, const int &row,
|
||
const int &col) {
|
||
int i = 0, j = 0;
|
||
|
||
// Check this row on left side
|
||
for (i = 0; i < col; i++) {
|
||
if (board[row][i]) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Check upper diagonal on left side
|
||
for (i = row, j = col; i >= 0 && j >= 0; i--, j--) {
|
||
if (board[i][j]) {
|
||
return false;
|
||
}
|
||
}
|
||
// Check lower diagonal on left side
|
||
for (i = row, j = col; j >= 0 && i < n; i++, j--) {
|
||
if (board[i][j]) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Solve n queens problem
|
||
* @tparam n number of matrix size
|
||
* @param board matrix where numbers are saved
|
||
* @param col current index in columns
|
||
*/
|
||
template <size_t n>
|
||
void solveNQ(std::array<std::array<int, n>, n> board, const int &col) {
|
||
if (col >= n) {
|
||
printSolution<n>(board);
|
||
return;
|
||
}
|
||
|
||
// Consider this column and try placing
|
||
// this queen in all rows one by one
|
||
for (int i = 0; i < n; i++) {
|
||
// Check if queen can be placed
|
||
// on board[i][col]
|
||
if (isSafe<n>(board, i, col)) {
|
||
// Place this queen in matrix
|
||
board[i][col] = 1;
|
||
|
||
// Recur to place rest of the queens
|
||
solveNQ<n>(board, col + 1);
|
||
|
||
board[i][col] = 0; // backtrack
|
||
}
|
||
}
|
||
}
|
||
} // namespace backtracking
|
||
|
||
/**
|
||
* Main function
|
||
*/
|
||
int main() {
|
||
const int n = 4;
|
||
std::array<std::array<int, n>, n> board = {
|
||
std::array<int, n>({0, 0, 0, 0}),
|
||
std::array<int, n>({0, 0, 0, 0}),
|
||
std::array<int, n>({0, 0, 0, 0}),
|
||
std::array<int, n>({0, 0, 0, 0})
|
||
};
|
||
|
||
backtracking::solveNQ<n>(board, 0);
|
||
return 0;
|
||
}
|