TheAlgorithms-C-Plus-Plus/others/iterative_tree_traversals.cpp
Swastika Gupta f34f93e77a
feat: Add the Subarray Sum implementation (#1527)
* Create subarray_sum.cpp

* updating DIRECTORY.md

* clang-format and clang-tidy fixes for 0a293ece

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* clang-format and clang-tidy fixes for f37f7b7c

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update subarray_sum.cpp

* clang-format and clang-tidy fixes for 9b0b5f87

* Update backtracking/subarray_sum.cpp

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* clang-format and clang-tidy fixes for 047366a8

* Update subarray_sum.cpp

* clang-format and clang-tidy fixes for 512b1887

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update backtracking/subarray_sum.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* fix: Apply suggestions from code review

* docs: Apply suggestions from code review

* clang-format and clang-tidy fixes for e6979047

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: David Leal <halfpacho@gmail.com>
2021-07-21 14:22:16 -05:00

401 lines
14 KiB
C++

/**
* @file
* @brief Iterative version of Preorder, Postorder, and preorder [Traversal of
* the Tree] (https://en.wikipedia.org/wiki/Tree_traversal)
* @author [Motasim](https://github.com/motasimmakki)
* @details
*
* ### Iterative Preorder Traversal of a tree
* Create a Stack that will store the Node of Tree.
* Push the root node into the stack.
* Save the root into the variabe named as current, and pop and elemnt from the
* stack. Store the data of current into the result array, and start traversing
* from it. Push both the child node of the current node into the stack, first
* right child then left child. Repeat the same set of steps untill the Stack
* becomes empty. And return the result array as the preorder traversal of a
* tree.
*
* ### Iterative Postorder Traversal of a tree
* Create a Stack that will store the Node of Tree.
* Push the root node into the stack.
* Save the root into the variabe named as current, and pop and elemnt from the
* stack. Store the data of current into the result array, and start traversing
* from it. Push both the child node of the current node into the stack, first
* left child then right child. Repeat the same set of steps untill the Stack
* becomes empty. Now reverse the result array and then return it to the calling
* function as a postorder traversal of a tree.
*
* ### Iterative Inorder Traversal of a tree
* Create a Stack that will store the Node of Tree.
* Push the root node into the stack.
* Save the root into the variabe named as current.
* Now iterate and take the current to the extreme left of the tree by
* traversing only to its left. Pop the elemnt from the stack and assign it to
* the current. Store the data of current into the result array. Repeat the same
* set of steps until the Stack becomes empty or the current becomes NULL. And
* return the result array as the inorder traversal of a tree.
*/
#include <algorithm> /// for `reverse`
#include <cassert> /// for `assert`
#include <iostream> /// for I/O operations
#include <stack> /// for `stack`
#include <vector> /// for `vector`
/**
* @namespace others
* @brief Other algorithms
*/
namespace others {
/**
* @namespace iterative_tree_traversals
* @brief Functions for the [Traversal of the
* Tree](https://en.wikipedia.org/wiki/Tree_traversal) algorithm
*/
namespace iterative_tree_traversals {
/**
* @brief defines the structure of a node of the tree
*/
struct Node {
int64_t data = 0; ///< The value/key of the node.
struct Node *left{}; ///< struct pointer to left subtree.
struct Node *right{}; ///< struct pointer to right subtree.
};
/**
* @brief defines the functions associated with the binary tree
*/
class BinaryTree {
public:
Node *createNewNode(
int64_t); ///< function that will create new node for insertion.
std::vector<int64_t> preOrderIterative(
Node *); ///< function that takes root of the tree as an argument, and
///< returns its preorder traversal.
std::vector<int64_t> postOrderIterative(
Node *); ///< function that takes root of the tree as an argument, and
///< returns its postorder traversal.
std::vector<int64_t> inOrderIterative(
Node *); ///< function that takes root of the tree as an argument, and
///< returns its inorder traversal.
};
/**
* @brief will allocate the memory for a node and, along the data and return the
* node.
* @param data value that a particular node will contain.
* @return pointer to the newly created node with assigned data.
*/
Node *BinaryTree::createNewNode(int64_t data) {
Node *node = new Node();
node->data = data;
node->left = node->right = nullptr;
return node;
}
/**
* @brief preOrderIterative() function that will perform the preorder traversal
* iteratively, and return the result array that contain the preorder traversal
* of a tree.
* @param root head/root node of a tree
* @return result that is containing the preorder traversal of a tree
*/
std::vector<int64_t> BinaryTree::preOrderIterative(Node *root) {
std::stack<Node *>
stack; ///< is used to find and traverse the child nodes.
std::vector<int64_t> result; ///< list of values, sorted in pre-order.
stack.push(root);
while (!stack.empty()) {
result.push_back(stack.top()->data);
Node *current = stack.top();
stack.pop();
if (current->right) {
stack.push(current->right);
}
if (current->left) {
stack.push(current->left);
}
}
return result;
}
/**
* @brief postOrderIterative() function that will perform the postorder
* traversal iteratively, and return the result array that contain the postorder
* traversal of a tree.
* @param root head/root node of a tree
* @return result that is containing the postorder traversal of a tree
*/
std::vector<int64_t> BinaryTree::postOrderIterative(Node *root) {
std::stack<Node *>
stack; ///< is used to find and traverse the child nodes.
std::vector<int64_t> result; ///< List of values, sorted in post-order.
stack.push(root);
while (!stack.empty()) {
result.push_back(stack.top()->data);
Node *current = stack.top();
stack.pop();
if (current->left) {
stack.push(current->left);
}
if (current->right) {
stack.push(current->right);
}
}
reverse(result.begin(), result.end());
return result;
}
/**
* @brief inOrderIterative() function that will perform the inorder traversal
* iteratively, and return the result array that contain the inorder traversal
* of a tree.
* @param root head/root node of a tree
* @return result that is containing the inorder traversal of a tree
*/
std::vector<int64_t> BinaryTree::inOrderIterative(Node *root) {
std::stack<Node *>
stack; ///< is used to find and traverse the child nodes.
std::vector<int64_t> result; ///< List of values, sorted in in-order.
Node *current = root;
while (!stack.empty() || current) {
while (current) {
stack.push(current);
current = current->left;
}
current = stack.top();
stack.pop();
result.push_back(current->data);
current = current->right;
}
return result;
}
} // namespace iterative_tree_traversals
} // namespace others
/**
* @brief Test the computed preorder with the actual preorder.
* @param binaryTree instance of the BinaryTree class
* @param root head/root node of a tree
*/
static void test1(others::iterative_tree_traversals::BinaryTree binaryTree,
others::iterative_tree_traversals::Node *root) {
std::vector<int64_t> actual_result{1, 2, 4, 5, 3};
std::vector<int64_t>
result; ///< result stores the preorder traversal of the binary tree
// Calling preOrderIterative() function by passing a root node,
// and storing the preorder traversal in result.
result = binaryTree.preOrderIterative(root);
// Self-testing the result using `assert`
for (int i = 0; i < result.size(); i++) {
assert(actual_result[i] == result[i]);
}
// Printing the result storing preorder.
std::cout << "\nPreOrder Traversal Is : " << std::endl;
for (auto i : result) {
std::cout << i << " ";
}
}
/**
* @brief Test the computed postorder with the actual postorder.
* @param binaryTree instance of BinaryTree class
* @param root head/root node of a tree
*/
static void test2(others::iterative_tree_traversals::BinaryTree binaryTree,
others::iterative_tree_traversals::Node *root) {
std::vector<int64_t> actual_result{4, 5, 2, 3, 1};
std::vector<int64_t>
result; ///< result stores the postorder traversal of the binary tree.
// Calling postOrderIterative() function by passing a root node,
// and storing the postorder traversal in result.
result = binaryTree.postOrderIterative(root);
// Self-testing the result using `assert`
for (int i = 0; i < result.size(); i++) {
assert(actual_result[i] == result[i]);
}
// Printing the result storing postorder.
std::cout << "\nPostOrder Traversal Is : " << std::endl;
for (auto i : result) {
std::cout << i << " ";
}
}
/**
* @brief Test the computed inorder with the actual inorder.
* @param binaryTree instance of BinaryTree class
* @param root head/root node of a tree
*/
static void test3(others::iterative_tree_traversals::BinaryTree binaryTree,
others::iterative_tree_traversals::Node *root) {
std::vector<int64_t> actual_result{4, 2, 5, 1, 3};
std::vector<int64_t>
result; ///< result stores the inorder traversal of the binary tree.
// Calling inOrderIterative() function by passing a root node,
// and storing the inorder traversal in result.
result = binaryTree.inOrderIterative(root);
// Self-testing the result using `assert`
for (int i = 0; i < result.size(); i++) {
assert(actual_result[i] == result[i]);
}
// Printing the result storing inorder.
std::cout << "\nInOrder Traversal Is : " << std::endl;
for (auto i : result) {
std::cout << i << " ";
}
}
/**
* @brief Test the computed preorder with the actual preorder on negative value.
* @param binaryTree instance of BinaryTree class
* @param root head/root node of a tree
*/
static void test4(others::iterative_tree_traversals::BinaryTree binaryTree,
others::iterative_tree_traversals::Node *root) {
std::vector<int64_t> actual_result{-1, -2, -4, -5, -3};
std::vector<int64_t>
result; ///< result stores the preorder traversal of the binary tree
// Calling preOrderIterative() function by passing a root node,
// and storing the preorder traversal in result.
result = binaryTree.preOrderIterative(root);
// Self-testing the result using `assert`
for (int i = 0; i < result.size(); i++) {
assert(actual_result[i] == result[i]);
}
// Printing the result storing preorder.
std::cout << "\nPreOrder Traversal Is : " << std::endl;
for (auto i : result) {
std::cout << i << " ";
}
}
/**
* @brief Test the computed postorder with the actual postorder on negative
* value.
* @param binaryTree instance of BinaryTree class
* @param root head/root node of a tree
*/
static void test5(others::iterative_tree_traversals::BinaryTree binaryTree,
others::iterative_tree_traversals::Node *root) {
std::vector<int64_t> actual_result{-4, -5, -2, -3, -1};
std::vector<int64_t>
result; ///< result stores the postorder traversal of the binary tree.
// Calling postOrderIterative() function by passing a root node,
// and storing the postorder traversal in result.
result = binaryTree.postOrderIterative(root);
// Self-testing the result using `assert`
for (int i = 0; i < result.size(); i++) {
assert(actual_result[i] == result[i]);
}
// Printing the result storing postorder.
std::cout << "\nPostOrder Traversal Is : " << std::endl;
for (auto i : result) {
std::cout << i << " ";
}
}
/**
* @brief Test the computed inorder with the actual inorder on negative value.
* @param binaryTree instance of BinaryTree class
* @param root head/root node of a tree
*/
static void test6(others::iterative_tree_traversals::BinaryTree binaryTree,
others::iterative_tree_traversals::Node *root) {
std::vector<int64_t> actual_result{-4, -2, -5, -1, -3};
std::vector<int64_t>
result; ///< result stores the inorder traversal of the binary tree.
// Calling inOrderIterative() function by passing a root node,
// and storing the inorder traversal in result.
result = binaryTree.inOrderIterative(root);
// Self-testing the result using `assert`
for (int i = 0; i < result.size(); i++) {
assert(actual_result[i] == result[i]);
}
// Printing the result storing inorder.
std::cout << "\nInOrder Traversal Is : " << std::endl;
for (auto i : result) {
std::cout << i << " ";
}
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
// Creating a tree with the following structure,
/*
1
/ \
2 3
/ \
4 5
*/
others::iterative_tree_traversals::BinaryTree
binaryTree; ///< instace of BinaryTree, used to access its members
///< functions.
others::iterative_tree_traversals::Node *root = binaryTree.createNewNode(1);
root->left = binaryTree.createNewNode(2);
root->right = binaryTree.createNewNode(3);
root->left->left = binaryTree.createNewNode(4);
root->left->right = binaryTree.createNewNode(5);
std::cout << "\n| Tests for positive data value |" << std::endl;
test1(binaryTree, root); // run preorder-iterative test
std::cout << "\nPre-order test Passed!" << std::endl;
test2(binaryTree, root); // run postorder-iterative test
std::cout << "\nPost-order test Passed!" << std::endl;
test3(binaryTree, root); // run inorder-iterative test
std::cout << "\nIn-order test Passed!" << std::endl;
// Modifying tree for negative values.
root->data = -1;
root->left->data = -2;
root->right->data = -3;
root->left->left->data = -4;
root->left->right->data = -5;
std::cout << "\n| Tests for negative data values |" << std::endl;
test4(binaryTree, root); // run preorder-iterative test on negative values
std::cout << "\nPre-order test on-negative value Passed!" << std::endl;
test5(binaryTree, root); // run postorder-iterative test on negative values
std::cout << "\nPost-order test on-negative value Passed!" << std::endl;
test6(binaryTree, root); // run inorder-iterative test on negative values
std::cout << "\nIn-order test on-negative value Passed!" << std::endl;
return 0;
}