TheAlgorithms-C-Plus-Plus/numerical_methods/composite_simpson_rule.cpp

177 lines
6.4 KiB
C++

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cassert>
#include <functional>
#include <map>
/*!
* @file
* @brief Implementation of the Composite Simpson Rule for the approximation
*
* @details The following is an implementation of the Composite Simpson Rule for the approximation of
* definite integrals. More info -> wiki: https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule
*
* The idea is to split the interval in an EVEN number N of intervals and use as interpolation points the xi
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
* first and last points of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
* I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)}
*
* That means that the first and last indexed i f(xi) are multiplied by 1,
* the odd indexed f(xi) by 4 and the even by 2.
*
* In this program there are 4 sample test functions f, g, k, l that are evaluated in the same interval.
*
* Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b
*
* N must be even number and a<b.
*
* In the end of the main() i compare the program's result with the one from mathematical software with
* 2 decimal points margin.
*
* Add sample function by replacing one of the f, g, k, l and the assert
*
* @author ggkogkou
*
*/
/**
* @namespace simpson_method
* @brief Contains the Simpson's method implementation
*/
namespace simpson_method{
/**
* @fn double evaluate_by_simpson(int N, double h, double a, std::function<double (double)> func)
* @brief Calculate integral or assert if integral is not a number (Nan)
* @param N: number of intervals
* @param h: step
* @param a: x0
* @param func: choose the function that will be evaluated
* @returns the result of the integration
*/
double evaluate_by_simpson(int N, double h, double a, std::function<double (double)> func);
} // simspon_method end
/**
* @fn double f(double x)
* @brief A function f(x) that will be used to test the method
* @param x The independent variable xi
* @returns the value of the dependent variable yi = f(xi)
*/
double f(double x);
/**
* @brief Another test function
*/
double g(double x);
/**
* @brief Another test function
*/
double k(double x);
/**
* @brief Another test function
*/
double l(double x);
int main(int argc, char** argv){
int N = 16; /// Number of intervals to divide the integration interval. MUST BE EVEN
double a = 1, b = 3; /// Starting and ending point of the integration in the real axis
double h; /// Step, calculated by a, b and N
bool used_argv_parameters = false; // If argv parameters are used then the assert must be omitted for the tst cases
// Get user input (by the command line parameters or the console after displaying messages)
if(argc == 4){
N = std::atoi(argv[1]);
a = (double) std::atof(argv[2]);
b = (double) std::atof(argv[3]);
// Check if a<b else abort
assert(a < b && "a has to be less than b");
assert(N > 0 && "N has to be > 0");
if(N<16 || a!=1 || b!=3) used_argv_parameters = true;
std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b << std::endl;
}
else
std::cout << "Default N=" << N << ", a=" << a << ", b=" << b << std::endl;
// Find the step
h = (b-a)/N;
// Call the functions and find the integral of each function
double result_f = simpson_method::evaluate_by_simpson(N, h, a, f);
assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong");
std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl;
double result_g = simpson_method::evaluate_by_simpson(N, h, a, g);
assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong");
std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl;
double result_k = simpson_method::evaluate_by_simpson(N, h, a, k);
assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong");
std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl;
double result_l = simpson_method::evaluate_by_simpson(N, h, a, l);
assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong");
std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl;
return 0;
}
double simpson_method::evaluate_by_simpson(int N, double h, double a, std::function<double (double)> func){
std::map<int, double> data_table; /// Contains the data points. key: i, value: f(xi)
double xi = a; // Initialize xi to the starting point x0 = a
// Create the data table
double temp;
for(int i=0; i<=N; i++){
temp = func(xi);
data_table.insert(std::pair<int ,double>(i, temp)); /// add i and f(xi)
xi += h; // Get the next point xi for the next iteration
}
// Evaluate the integral.
// Remember: f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)
double evaluate_integral = 0;
for(int i=0; i<=N; i++){
if(i == 0 || i == N) evaluate_integral += data_table.at(i);
else if(i%2 == 1) evaluate_integral += 4 * data_table.at(i);
else evaluate_integral += 2 * data_table.at(i);
}
// Multiply by the coefficient h/3
evaluate_integral *= h/3;
// If the result calculated is nan, then the user has given wrong input interval.
assert(!std::isnan(evaluate_integral) && "The definite integral can't be evaluated. Check the validity of your input.\n");
// Else return
return evaluate_integral;
}
/*
------------ Test sample functions below ----------------------------
*/
// Sample function f(x) = sqrt(x) + log(x)
double f(double x){
return std::sqrt(x) + std::log(x);
}
// Sample function g(x) = e^-x * (4 - x^2)
double g(double x){
return std::exp(-x) * (4 - std::pow(x, 2));
}
// Sample function k(x) = sqrt(2x^3+3)
double k(double x){
return std::sqrt(2*std::pow(x, 3)+3);
}
// Sample function l(x) = x+ln(2x+1)
double l(double x){
return x + std::log(2*x+1);
}