TheAlgorithms-C-Plus-Plus/graph/lca.cpp
2020-07-25 07:55:30 +05:30

102 lines
2.6 KiB
C++

//#include<bits/stdc++.h>
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
#include <cstring>
// Find the lowest common ancestor using binary lifting in O(nlogn)
// Zero based indexing
// Resource : https://cp-algorithms.com/graph/lca_binary_lifting.html
const int N = 1005;
const int LG = log2(N) + 1;
struct lca {
int n;
std::vector<int> adj[N]; // Graph
int up[LG][N]; // build this table
int level[N]; // get the levels of all of them
lca(int n_) : n(n_) {
memset(up, -1, sizeof(up));
memset(level, 0, sizeof(level));
for (int i = 0; i < n - 1; ++i) {
int a, b;
std::cin >> a >> b;
a--;
b--;
adj[a].push_back(b);
adj[b].push_back(a);
}
level[0] = 0;
dfs(0, -1);
build();
}
void verify() {
for (int i = 0; i < n; ++i) {
std::cout << i << " : level: " << level[i] << std::endl;
}
std::cout << std::endl;
for (int i = 0; i < LG; ++i) {
std::cout << "Power:" << i << ": ";
for (int j = 0; j < n; ++j) {
std::cout << up[i][j] << " ";
}
std::cout << std::endl;
}
}
void build() {
for (int i = 1; i < LG; ++i) {
for (int j = 0; j < n; ++j) {
if (up[i - 1][j] != -1) {
up[i][j] = up[i - 1][up[i - 1][j]];
}
}
}
}
void dfs(int node, int par) {
up[0][node] = par;
for (auto i : adj[node]) {
if (i != par) {
level[i] = level[node] + 1;
dfs(i, node);
}
}
}
int query(int u, int v) {
u--;
v--;
if (level[v] > level[u]) {
std::swap(u, v);
}
// u is at the bottom.
int dist = level[u] - level[v];
// Go up this much distance
for (int i = LG - 1; i >= 0; --i) {
if (dist & (1 << i)) {
u = up[i][u];
}
}
if (u == v) {
return u;
}
assert(level[u] == level[v]);
for (int i = LG - 1; i >= 0; --i) {
if (up[i][u] != up[i][v]) {
u = up[i][u];
v = up[i][v];
}
}
assert(up[0][u] == up[0][v]);
return up[0][u];
}
};
int main() {
int n; // number of nodes in the tree.
lca l(n); // will take the input in the format given
// n-1 edges of the form
// a b
// Use verify function to see.
}