TheAlgorithms-C-Plus-Plus/backtracking/sudoku_solve.cpp
Francesco Urbani 9a78d69083
feat: added highlighting differences in Sudoku Solver (#1438)
* printing out the solved grid with the differences highlighted.

* added documentation to the functions.

* removed #define because code formatter check failed.
2021-01-05 15:10:27 +05:30

158 lines
5.7 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @file
* @brief [Sudoku Solver](https://en.wikipedia.org/wiki/Sudoku) algorithm.
*
* @details
* Sudoku (数独, sūdoku, digit-single) (/suːˈdoʊkuː/, /-ˈdɒk-/, /sə-/, originally called
* Number Place) is a logic-based, combinatorial number-placement puzzle.
* In classic sudoku, the objective is to fill a 9×9 grid with digits so that each column,
* each row, and each of the nine 3×3 subgrids that compose the grid (also called "boxes", "blocks", or "regions")
* contain all of the digits from 1 to 9. The puzzle setter provides a
* partially completed grid, which for a well-posed puzzle has a single solution.
*
* @author [DarthCoder3200](https://github.com/DarthCoder3200)
* @author [David Leal](https://github.com/Panquesito7)
*/
#include <iostream>
#include <array>
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* Checks if it's possible to place a number 'no'
* @tparam V number of vertices in the array
* @param mat matrix where numbers are saved
* @param i current index in rows
* @param j current index in columns
* @param no number to be added in matrix
* @param n number of times loop will run
* @returns `true` if 'mat' is different from 'no'
* @returns `false` if 'mat' equals to 'no'
*/
template <size_t V>
bool isPossible(const std::array <std::array <int, V>, V> &mat, int i, int j, int no, int n) {
/// 'no' shouldn't be present in either row i or column j
for (int x = 0; x < n; x++) {
if (mat[x][j] == no || mat[i][x] == no) {
return false;
}
}
/// 'no' shouldn't be present in the 3*3 subgrid
int sx = (i / 3) * 3;
int sy = (j / 3) * 3;
for (int x = sx; x < sx + 3; x++) {
for (int y = sy; y < sy + 3; y++) {
if (mat[x][y] == no) {
return false;
}
}
}
return true;
}
/**
* Utility function to print matrix
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the differences
* @param n number of times loop will run
* @return void
*/
template <size_t V>
void printMat(const std::array <std::array <int, V>, V> &mat, const std::array <std::array <int, V>, V> &starting_mat, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (starting_mat[i][j] != mat[i][j]) {
std::cout << "\033[93m" << mat[i][j] << "\033[0m" << " ";
} else {
std::cout << mat[i][j] << " ";
}
if ((j + 1) % 3 == 0) {
std::cout << '\t';
}
}
if ((i + 1) % 3 == 0) {
std::cout << std::endl;
}
std::cout << std::endl;
}
}
/**
* Sudoku algorithm
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the differences
* @param i current index in rows
* @param j current index in columns
* @returns `true` if 'no' was placed
* @returns `false` if 'no' was not placed
*/
template <size_t V>
bool solveSudoku(std::array <std::array <int, V>, V> &mat, const std::array <std::array <int, V>, V> &starting_mat, int i, int j) {
/// Base Case
if (i == 9) {
/// Solved for 9 rows already
backtracking::printMat<V>(mat, starting_mat, 9);
return true;
}
/// Crossed the last Cell in the row
if (j == 9) {
return backtracking::solveSudoku<V>(mat, starting_mat, i + 1, 0);
}
/// Blue Cell - Skip
if (mat[i][j] != 0) {
return backtracking::solveSudoku<V>(mat, starting_mat, i, j + 1);
}
/// White Cell
/// Try to place every possible no
for (int no = 1; no <= 9; no++) {
if (backtracking::isPossible<V>(mat, i, j, no, 9)) {
/// Place the 'no' - assuming a solution will exist
mat[i][j] = no;
bool solution_found = backtracking::solveSudoku<V>(mat, starting_mat, i, j + 1);
if (solution_found) {
return true;
}
/// Couldn't find a solution
/// loop will place the next no.
}
}
/// Solution couldn't be found for any of the numbers provided
mat[i][j] = 0;
return false;
}
} // namespace backtracking
/**
* Main function
*/
int main() {
const int V = 9;
std::array <std::array <int, V>, V> mat = {
std::array <int, V> {5, 3, 0, 0, 7, 0, 0, 0, 0},
std::array <int, V> {6, 0, 0, 1, 9, 5, 0, 0, 0},
std::array <int, V> {0, 9, 8, 0, 0, 0, 0, 6, 0},
std::array <int, V> {8, 0, 0, 0, 6, 0, 0, 0, 3},
std::array <int, V> {4, 0, 0, 8, 0, 3, 0, 0, 1},
std::array <int, V> {7, 0, 0, 0, 2, 0, 0, 0, 6},
std::array <int, V> {0, 6, 0, 0, 0, 0, 2, 8, 0},
std::array <int, V> {0, 0, 0, 4, 1, 9, 0, 0, 5},
std::array <int, V> {0, 0, 0, 0, 8, 0, 0, 7, 9}
};
backtracking::printMat<V>(mat, mat, 9);
std::cout << "Solution " << std::endl;
std::array <std::array <int, V>, V> starting_mat = mat;
backtracking::solveSudoku<V>(mat, starting_mat, 0, 0);
return 0;
}