TheAlgorithms-C-Plus-Plus/graph/connected_components_with_dsu.cpp
2020-10-28 18:07:01 +05:30

96 lines
2.7 KiB
C++

/**
* @file
* @brief [Disjoint union](https://en.wikipedia.org/wiki/Disjoint_union)
*
* @details
* The Disjoint union is the technique to find connected component in graph efficiently.
*
* ### Algorithm
* In Graph, if you have to find out the number of connected components, there are 2 options
* 1. Depth first search
* 2. Disjoint union
* 1st option is inefficient, Disjoint union is the most optimal way to find this.
*/
#include <iostream> /// for io operations
#include <set> /// for std::set
#include <vector> /// for std::vector
int number_of_nodes; // denotes number of nodes;
std::vector<int> parent; // parent of each node
std::vector<int> connected_set_size; // size of each set
/**
* @brief function the initialize every node as it's own parent
* @returns void
*/
void make_set() {
for (int i = 1; i <= number_of_nodes; i++) {
parent[i] = i;
connected_set_size[i] = 1;
}
}
/**
* @brief To find the component where following node belongs to
* @param val parent of val should be found
* @return parent of val
*/
int find_set(int val) {
while (parent[val] != val) {
parent[val] = parent[parent[val]];
val = parent[val];
}
return val;
}
/**
* @brief To join 2 components to belong to one
* @param a 1st component
* @param b 2nd component
* @returns void
*/
void union_sets(int a, int b) {
a = find_set(a); // find the parent of a
b = find_set(b); // find the parent of b
// If parents of both nodes are not same, combine them
if (a != b) {
if (connected_set_size[a] < connected_set_size[b]) {
std::swap(a, b); // swap both components
}
parent[b] = a; // make a node as parent of b node.
connected_set_size[a] += connected_set_size[b]; // sum the size of both as they combined
}
}
/**
* @brief To find total no of connected components
* @return Number of connected components
*/
int no_of_connected_components() {
std::set<int> temp; // temp set to count number of connected components
for (int i = 1; i <= number_of_nodes; i++)
temp.insert(find_set(i));
return temp.size(); // return the size of temp set
}
/**
* @brief Test Implementations
* @returns void
*/
static void test() {
std::cin >> number_of_nodes;
parent.resize(number_of_nodes + 1);
connected_set_size.resize(number_of_nodes + 1);
make_set();
int edges = 0;
std::cin >> edges; // no of edges in the graph
while (edges--) {
int node_a = 0, node_b = 0;
std::cin >> node_a >> node_b;
union_sets(node_a, node_b);
}
std::cout << no_of_connected_components() << std::endl;
}
int main() {
test(); // Execute the tests
return 0;
}