mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
96 lines
2.7 KiB
C++
96 lines
2.7 KiB
C++
/**
|
|
* @file
|
|
* @brief [Disjoint union](https://en.wikipedia.org/wiki/Disjoint_union)
|
|
*
|
|
* @details
|
|
* The Disjoint union is the technique to find connected component in graph efficiently.
|
|
*
|
|
* ### Algorithm
|
|
* In Graph, if you have to find out the number of connected components, there are 2 options
|
|
* 1. Depth first search
|
|
* 2. Disjoint union
|
|
* 1st option is inefficient, Disjoint union is the most optimal way to find this.
|
|
*/
|
|
#include <iostream> /// for io operations
|
|
#include <set> /// for std::set
|
|
#include <vector> /// for std::vector
|
|
|
|
int number_of_nodes; // denotes number of nodes;
|
|
std::vector<int> parent; // parent of each node
|
|
std::vector<int> connected_set_size; // size of each set
|
|
/**
|
|
* @brief function the initialize every node as it's own parent
|
|
* @returns void
|
|
*/
|
|
void make_set() {
|
|
for (int i = 1; i <= number_of_nodes; i++) {
|
|
parent[i] = i;
|
|
connected_set_size[i] = 1;
|
|
}
|
|
}
|
|
/**
|
|
* @brief To find the component where following node belongs to
|
|
* @param val parent of val should be found
|
|
* @return parent of val
|
|
*/
|
|
int find_set(int val) {
|
|
while (parent[val] != val) {
|
|
parent[val] = parent[parent[val]];
|
|
val = parent[val];
|
|
}
|
|
return val;
|
|
}
|
|
/**
|
|
* @brief To join 2 components to belong to one
|
|
* @param a 1st component
|
|
* @param b 2nd component
|
|
* @returns void
|
|
*/
|
|
void union_sets(int a, int b) {
|
|
a = find_set(a); // find the parent of a
|
|
b = find_set(b); // find the parent of b
|
|
|
|
// If parents of both nodes are not same, combine them
|
|
if (a != b) {
|
|
if (connected_set_size[a] < connected_set_size[b]) {
|
|
std::swap(a, b); // swap both components
|
|
}
|
|
parent[b] = a; // make a node as parent of b node.
|
|
connected_set_size[a] += connected_set_size[b]; // sum the size of both as they combined
|
|
}
|
|
}
|
|
/**
|
|
* @brief To find total no of connected components
|
|
* @return Number of connected components
|
|
*/
|
|
int no_of_connected_components() {
|
|
std::set<int> temp; // temp set to count number of connected components
|
|
for (int i = 1; i <= number_of_nodes; i++)
|
|
temp.insert(find_set(i));
|
|
return temp.size(); // return the size of temp set
|
|
}
|
|
|
|
/**
|
|
* @brief Test Implementations
|
|
* @returns void
|
|
*/
|
|
static void test() {
|
|
std::cin >> number_of_nodes;
|
|
parent.resize(number_of_nodes + 1);
|
|
connected_set_size.resize(number_of_nodes + 1);
|
|
make_set();
|
|
int edges = 0;
|
|
std::cin >> edges; // no of edges in the graph
|
|
while (edges--) {
|
|
int node_a = 0, node_b = 0;
|
|
std::cin >> node_a >> node_b;
|
|
union_sets(node_a, node_b);
|
|
}
|
|
std::cout << no_of_connected_components() << std::endl;
|
|
}
|
|
|
|
int main() {
|
|
test(); // Execute the tests
|
|
return 0;
|
|
}
|