mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
58 lines
1.6 KiB
C++
58 lines
1.6 KiB
C++
/**
|
|
* @file
|
|
* @brief C++ Program to find
|
|
* [Euler's Totient](https://en.wikipedia.org/wiki/Euler%27s_totient_function)
|
|
* function
|
|
*
|
|
* Euler Totient Function is also known as phi function.
|
|
* \f[\phi(n) =
|
|
* \phi\left({p_1}^{a_1}\right)\cdot\phi\left({p_2}^{a_2}\right)\ldots\f] where
|
|
* \f$p_1\f$, \f$p_2\f$, \f$\ldots\f$ are prime factors of n.
|
|
* <br/>3 Euler's properties:
|
|
* 1. \f$\phi(n) = n-1\f$
|
|
* 2. \f$\phi(n^k) = n^k - n^{k-1}\f$
|
|
* 3. \f$\phi(a,b) = \phi(a)\cdot\phi(b)\f$ where a and b are relative primes.
|
|
*
|
|
* Applying this 3 properties on the first equation.
|
|
* \f[\phi(n) =
|
|
* n\cdot\left(1-\frac{1}{p_1}\right)\cdot\left(1-\frac{1}{p_2}\right)\cdots\f]
|
|
* where \f$p_1\f$,\f$p_2\f$... are prime factors.
|
|
* Hence Implementation in \f$O\left(\sqrt{n}\right)\f$.
|
|
* <br/>Some known values are:
|
|
* * \f$\phi(100) = 40\f$
|
|
* * \f$\phi(1) = 1\f$
|
|
* * \f$\phi(17501) = 15120\f$
|
|
* * \f$\phi(1420) = 560\f$
|
|
*/
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
|
|
/** Function to caculate Euler's totient phi
|
|
*/
|
|
uint64_t phiFunction(uint64_t n) {
|
|
uint64_t result = n;
|
|
for (uint64_t i = 2; i * i <= n; i++) {
|
|
if (n % i == 0) {
|
|
while (n % i == 0) {
|
|
n /= i;
|
|
}
|
|
result -= result / i;
|
|
}
|
|
}
|
|
if (n > 1) result -= result / n;
|
|
return result;
|
|
}
|
|
|
|
/// Main function
|
|
int main(int argc, char *argv[]) {
|
|
uint64_t n;
|
|
if (argc < 2) {
|
|
std::cout << "Enter the number: ";
|
|
} else {
|
|
n = strtoull(argv[1], nullptr, 10);
|
|
}
|
|
std::cin >> n;
|
|
std::cout << phiFunction(n);
|
|
return 0;
|
|
}
|