TheAlgorithms-C-Plus-Plus/data_structures/tree_234.cpp
fedom 9d3d40b44e
feat: add 2-3-4-tree implment (#1366)
* feat: add 2-3-4 tree implment

* updating DIRECTORY.md

* docs: fix format issue of tab&space

* fix: fix code format issues

* fix: convert printf() to std::cout

* fix: fix some clang-tidy warnings

* fix: fix clang-tidy warnings of memory owning

* fix: remove use of  std::make_unique which is not support by c++11

* docs: improve documents

* fix: replace fprint with ofstream, and improve docs

* docs: improve docs for including header file

* docs: improve file doces

* fix: convert item type to int64_t, convert node item count type to int8_t

* refactor: Apply suggestions from code review

Add namespaces

Co-authored-by: David Leal <halfpacho@gmail.com>

* docs: remove obsolete comments

Co-authored-by: liuhuan <liuhuan@ainirobot.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: David Leal <halfpacho@gmail.com>
2020-12-01 11:16:49 +05:30

1307 lines
39 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @file
* @brief A demo 2-3-4 tree implementation
* @details
* 234 tree is a self-balancing data structure that is an isometry of
* redblack trees. Though we seldom use them in practice, we study them
* to understand the theory behind Red-Black tree. Please read following
* links for more infomation.
* [234 tree](https://en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree)
* [2-3-4 Trees: A Visual
Introduction](https://www.educative.io/page/5689413791121408/80001)
* We Only implement some basic and complicated operations in this demo.
* Other operations should be easy to be added.
* @author [liuhuan](https://github.com/fedom)
*/
#include <array> /// for std::array
#include <cassert> /// for assert
#include <fstream> /// for std::ofstream
#include <iostream> /// for std::cout
#include <memory> /// for std::unique_ptr
#include <queue> /// for std::queue
#include <string> /// for std::to_string
/**
* @namespace data_structures
* @brief Algorithms with data structures
*/
namespace data_structures {
/**
* @namespace tree_234
* @brief Functions for [234 tree](https://en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree)
*/
namespace tree_234 {
/** @brief 2-3-4 tree node class */
class Node {
public:
/**
* @brief Node constructor
* @param item the first value we insert to the node
*/
explicit Node(int64_t item)
: count(1),
items({{item, 0, 0}}),
children({{nullptr, nullptr, nullptr, nullptr}}) {}
/**
* @brief Get the item count that current saved in the node
* @return item count
*/
int8_t GetCount() { return count; }
/**
* @brief Set the item count of the node
*
* This is only used when we spliting and merging node where we need to do
* some raw operation manually. In common inserting and removing operation
* the count is maintained automatically.
*
* @param c the count to set
*/
void SetCount(int8_t c) { count = c; }
/**
* @brief Check if node is a leaf
* @return true if node is leaf, false otherwise
*/
bool IsLeaf() { return children[0] == nullptr; }
/**
* @brief Check if node is a full (4-node)
* @return true if node is full (4-node), false otherwise
*/
bool IsFull() { return count == 3; }
/**
* @brief Check if node is a 2-node
* @return true if node is 2-node, otherwise false
*/
bool Is2Node() { return count == 1; }
/** @brief Check if node is a 3-node or 4-node, this is useful when we
* delete item from 2-3-4 tree
* @return true if node is 3-node or 4-node, false otherwise
*/
bool Is34Node() { return count == 2 || count == 3; }
/**
* @brief Check if item is in the node
* @param item item to check
* @return true if item in the node, otherwise false
*/
bool Contains(int64_t item) {
for (int8_t i = 0; i < count; i++) {
if (item == items[i]) {
return true;
}
}
return false;
}
/**
* @brief Get the index of the item in the node, 0-based
* @param item item to check
* @return 0-based index of the item in the node, if not in the node, -1 is
* returned
*/
int8_t GetItemIndex(int64_t item) {
for (int8_t i = 0; i < count; i++) {
if (items[i] == item) {
return i;
}
}
return -1;
}
/**
* @brief Get max item (rightmost) in the current node
* @return max item
*/
int64_t GetMaxItem() { return items[count - 1]; }
/**
* @brief get min item (leftmost) in the current node
* @return min item
*/
int64_t GetMinItem() { return items[0]; }
/**
* @brief Get item of the \index index
* @param index the item index to get
* @return the item
*/
int64_t GetItem(int8_t index) { return items[index]; }
/**
* @brief Set item value at position of index
* @param index the index of the item to set
* @param new_item item value
*/
void SetItem(int8_t index, int64_t new_item) {
assert(index >= 0 && index <= 2);
items[index] = new_item;
}
/**
* @brief Insert item to the proper position of the node and return the
* position index.
*
* This is a helper function we use during insertion. Please mind that when
* insert a item, we aslo need to take care of two child pointers. One is
* the original child pointer at the insertion position. It can be placed as
* new item's either left child or right child. And the other is the new
* child that should be added. For our dedicated situation here, we choose
* to use the original child as the new item's left child, and add a null
* pointer to its right child. So after use the function, please update
* these two children pointer manually.
*
* @param item value to be inserted to the node
* @return index where item is inserted, caller can use this
* index to update its left and right child
*/
int InsertItem(int item) {
assert(!IsFull());
if (Contains(item)) {
return -1;
}
int8_t i = 0;
for (i = 0; i < count; i++) {
if (items[i] > item) {
break;
}
}
InsertItemByIndex(i, item, nullptr, true);
return i;
}
/**
* @brief Insert a value to the index position
* @param index index where to insert item
* @param item value to insert
* @param with_child new added child pointer
* @param to_left true indicate adding with_child to new item's left child,
* otherwise to right child
*/
void InsertItemByIndex(int8_t index, int64_t item, Node *with_child,
bool to_left = true) {
assert(count < 3 && index >= 0 && index < 3);
for (int8_t i = count - 1; i >= index; i--) {
items[i + 1] = items[i];
}
items[index] = item;
int8_t start_index = to_left ? index : index + 1;
for (int8_t i = count; i >= start_index; i--) {
children[i + 1] = children[i];
}
children[start_index] = with_child;
count++;
}
/**
* @brief Insert a value to the index position
* @param index index of the item to remove
* @param keep_left which child of the item to keep, true keep the left
* child, false keep the right child
* @return the removed child pointer
*/
Node *RemoveItemByIndex(int8_t index, bool keep_left) {
assert(index >= 0 && index < count);
Node *removed_child = keep_left ? children[index + 1] : children[index];
for (int8_t i = index; i < count - 1; i++) {
items[i] = items[i + 1];
}
for (int8_t i = keep_left ? index + 1 : index; i < count; i++) {
children[i] = children[i + 1];
}
count--;
return removed_child;
}
/**
* @brief Get the child's index of the children array
* @param child child pointer of which to get the index
* @return the index of child
*/
int8_t GetChildIndex(Node *child) {
for (int8_t i = 0; i < count + 1; i++) {
if (children[i] == child) {
return i;
}
}
return -1;
}
/**
* @brief Get the child pointer at position of index
* @param index index of child to get
* @return the child pointer
*/
Node *GetChild(int8_t index) { return children[index]; }
/**
* @brief Set child pointer to the position of index
* @param index children index
* @param child pointer to set
*/
void SetChild(int8_t index, Node *child) { children[index] = child; }
/**
* @brief Get rightmose child of the current node
* @return the rightmost child
*/
Node *GetRightmostChild() { return children[count]; }
/**
* @brief Get leftmose child of the current node
* @return the leftmost child
*/
Node *GetLeftmostChild() { return children[0]; }
/**
* @brief Get left child of item at item_index
* @param item_index index of the item whose left child to be get
* @return left child of items[index]'s
*/
Node *GetItemLeftChild(int8_t item_index) {
if (item_index < 0 || item_index > count - 1) {
return nullptr;
}
return children[item_index];
}
/**
* @brief Get right child of item at item_index
* @param item_index index of the item whose right child to be get
* @return right child of items[index]'s
*/
Node *GetItemRightChild(int8_t item_index) {
if (item_index < 0 || item_index > count - 1) {
return nullptr;
}
return children[item_index + 1];
}
/**
* @brief Get next node which is possibly contains item
* @param item item to search
* @return the next node that possibly contains item
*/
Node *GetNextPossibleChild(int64_t item) {
int i = 0;
for (i = 0; i < count; i++) {
if (items[i] > item) {
break;
}
}
return children[i];
}
private:
std::array<int64_t, 3> items; ///< store items
std::array<Node *, 4> children; ///< store the children pointers
int8_t count = 0; ///< track the current item count
};
/** @brief 2-3-4 tree class */
class Tree234 {
public:
Tree234() = default;
Tree234(const Tree234 &) = delete;
Tree234(const Tree234 &&) = delete;
Tree234 &operator=(const Tree234 &) = delete;
Tree234 &operator=(const Tree234 &&) = delete;
~Tree234();
/**
* @brief Insert item to tree
* @param item item to insert
*/
void Insert(int64_t item);
/**
* @brief Remove item from tree
* @param item item to remove
* @return true if item found and removed, false otherwise
*/
bool Remove(int64_t item);
/** @brief In-order traverse */
void Traverse();
/**
* @brief Print tree into a dot file
* @param file_name output file name, if nullptr then use "out.dot" as
* default
*/
void Print(const char *file_name = nullptr);
private:
/**
* @brief A insert implementation of pre-split
* @param item item to insert
*/
void InsertPreSplit(int64_t item);
/**
* @brief A insert implementation of post-merge
* @param item item to insert
*/
void InsertPostMerge(int64_t item);
/**
* @brief A helper function used by post-merge insert
* @param tree tree where to insert item
* @param item item to insert
* @return the node that split as the parent when overflow happen
*/
Node *Insert(Node *tree, int64_t item);
/**
* @brief A helper function used during post-merge insert
*
* When the inserting leads to overflow, it will split the node to 1 parent
* and 2 children. The parent will be merged to its origin parent after
* that. This is the function to complete this task. So the param node is
* always a 2-node.
*
* @param dst_node the target node we will merge node to, can be type of
* 2-node, 3-node or 4-node
* @param node the source node we will merge from, type must be 2-node
* @return overflow node of this level
*/
Node *MergeNode(Node *dst_node, Node *node);
/**
* @brief Merge node to a not-full target node
*
* Since the target node is not-full, no overflow will happen. So we have
* nothing to return.
*
* @param dst_node the target not-full node, that is the type is either
* 2-node or 3-node, but not 4-node
* @param node the source node we will merge from, type must be 2-node
*/
void MergeNodeNotFull(Node *dst_node, Node *node);
/**
* @brief Split a 4-node to 1 parent and 2 children, and return the parent
* node
* @param node the node to split, it must be a 4-node
* @return split parent node
*/
Node *SplitNode(Node *node);
/**
* @brief Get the max item of the tree
* @param tree the tree we will get item from
* @return max item of the tree
*/
int64_t GetTreeMaxItem(Node *tree);
/**
* @brief Get the min item of the tree
* @param tree the tree we will get item from
* @return min item of the tree
*/
int64_t GetTreeMinItem(Node *tree);
/**
* @brief A handy function to try if we can do a left rotate to the target
* node
*
* Given two node, the parent and the target child, the left rotate
* operation is uniquely identified. The source node must be the right
* sibling of the target child. The operation can be successfully done if
* the to_child has a right sibling and its right sibling is not 2-node.
*
* @param parent the parent node in this left rotate operation
* @param to_child the target child of this left rotate operation. In our
* case, this node is always 2-node
* @return true if we successfully do the rotate. false if the
* requirements are not fulfilled.
*/
bool TryLeftRotate(Node *parent, Node *to_child);
/**
* @brief A handy function to try if we can do a right rotate to the target
* node
*
* Given two node, the parent and the target child, the right rotate
* operation is uniquely identified. The source node must be the left
* sibling of the target child. The operation can be successfully done if
* the to_child has a left sibling and its left sibling is not 2-node.
*
* @param parent the parent node in this right rotate operation
* @param to_child the target child of this right rotate operation. In our
* case, it is always 2-node
* @return true if we successfully do the rotate. false if the
* requirements are not fulfilled.
*/
bool TryRightRotate(Node *parent, Node *to_child);
/**
* @brief Do the actual right rotate operation
*
* Given parent node, and the pivot item index, the right rotate operation
* is uniquely identified. The function assume the requirements are
* fulfilled and won't do any extra check. This function is call by
* TryRightRotate(), and the condition checking should be done before call
* it.
*
* @param parent the parent node in this right rotate operation
* @param index the pivot item index of this right rotate operation.
*/
void RightRotate(Node *parent, int8_t index);
/**
* @brief Do the actual left rotate operation
*
* Given parent node, and the pivot item index, the left rotate operation is
* uniquely identified. The function assume the requirements are fulfilled
* and won't do any extra check. This function is call by TryLeftRotate(),
* and the condition checking should be done before call it.
*
* @param parent the parent node in this right rotate operation
* @param index the pivot item index of this right rotate operation.
*/
void LeftRotate(Node *parent, int8_t index);
/**
* @brief Main function implement the pre-merge remove operation
* @param node the tree to remove item from
* @param item item to remove
* @return true if remove success, false otherwise
* */
bool RemovePreMerge(Node *node, int64_t item);
/**
* @brief Merge the item at index of the parent node, and its left and right
* child
*
* the left and right child node must be 2-node. The 3 items will be merged
* into a 4-node. In our case the parent can be a 2-node iff it is the root.
* Otherwise, it must be 3-node or 4-node.
*
* @param parent the parent node in the merging operation
* @param index the item index of the parent node that involved in the
* merging
* @return the merged 4-node
*/
Node *Merge(Node *parent, int8_t index);
/**
* @brief Recursive release the tree
* @param tree root node of the tree to delete
*/
void DeleteNode(Node *tree);
/**
* @brief In-order traverse the tree, print items
* @param tree tree to traverse
*/
void Traverse(Node *tree);
/**
* @brief Print the tree to a dot file. You can convert it to picture with
* graphviz
* @param ofs output file stream to print to
* @param node current node to print
* @param parent_index current node's parent node index, this is used to
* draw the link from parent to current node
* @param index current node's index of level order which is used to name
* the node in dot file
* @param parent_child_index the index that current node in parent's
* children array, range in [0,4), help to locate the start position of the
* link between nodes
*/
void PrintNode(std::ofstream &ofs, Node *node, int64_t parent_index,
int64_t index, int8_t parent_child_index);
Node *root_{nullptr}; ///< root node of the tree
};
Tree234::~Tree234() { DeleteNode(root_); }
/**
* @brief Recursive release the tree
* @param tree root node of the tree to delete
*/
void Tree234::DeleteNode(Node *tree) {
if (!tree) {
return;
}
for (int8_t i = 0; i <= tree->GetCount(); i++) {
DeleteNode(tree->GetChild(i));
}
delete tree;
}
/**
* @brief In-order traverse the tree, print items
* @param tree tree to traverse
*/
void Tree234::Traverse() {
Traverse(root_);
std::cout << std::endl;
}
void Tree234::Traverse(Node *node) {
if (!node) {
return;
}
int8_t i = 0;
for (i = 0; i < node->GetCount(); i++) {
Traverse(node->GetChild(i));
std::cout << node->GetItem(i) << ", ";
}
Traverse(node->GetChild(i));
}
/**
* @brief A insert implementation of pre-split
* @param item item to insert
*/
void Tree234::InsertPreSplit(int64_t item) {
if (!root_) {
root_ = new Node(item);
return;
}
Node *parent = nullptr;
Node *node = root_;
while (true) {
if (!node) {
std::unique_ptr<Node> tmp(new Node(item));
MergeNodeNotFull(parent, tmp.get());
return;
}
if (node->Contains(item)) {
return;
}
if (node->IsFull()) {
node = SplitNode(node);
Node *cur_node = nullptr;
if (item < node->GetItem(0)) {
cur_node = node->GetChild(0);
} else {
cur_node = node->GetChild(1);
}
if (!parent) {
// for the root node parent is nullptr, we simply assign the
// split parent to root_
root_ = node;
} else {
// merge the split parent to its origin parent
MergeNodeNotFull(parent, node);
}
node = cur_node;
}
parent = node;
node = parent->GetNextPossibleChild(item);
}
}
/**
* @brief A insert implementation of post-merge
* @param item item to insert
*/
void Tree234::InsertPostMerge(int64_t item) {
if (!root_) {
root_ = new Node(item);
return;
}
Node *split_node = Insert(root_, item);
// if root has split, then update root_
if (split_node) {
root_ = split_node;
}
}
/**
* @brief Insert item to tree
* @param item item to insert
*/
void Tree234::Insert(int64_t item) { InsertPreSplit(item); }
/**
* @brief A helper function used by post-merge insert
* @param tree tree where to insert item
* @param item item to insert
* @return the node that split as the parent when overflow happen
*/
Node *Tree234::Insert(Node *tree, int64_t item) {
assert(tree != nullptr);
std::unique_ptr<Node> split_node;
if (tree->Contains(item)) {
// return nullptr indicate current node not overflow
return nullptr;
}
Node *next_node = tree->GetNextPossibleChild(item);
if (next_node) {
split_node.reset(Insert(next_node, item));
} else {
split_node.reset(new Node(item));
}
if (split_node) {
return MergeNode(tree, split_node.get());
}
return nullptr;
}
/**
* @brief A helper function used during post-merge insert
*
* When the inserting leads to overflow, it will split the node to 1 parent
* and 2 children. The parent will be merged to its origin parent after
* that. This is the function to complete this task. So the param node is
* always a 2-node.
*
* @param dst_node the target node we will merge node to, can be type of
* 2-node, 3-node or 4-node
* @param node the source node we will merge from, type must be 2-node
* @return overflow node of this level
*/
Node *Tree234::MergeNode(Node *dst_node, Node *node) {
assert(dst_node != nullptr && node != nullptr);
if (!dst_node->IsFull()) {
MergeNodeNotFull(dst_node, node);
return nullptr;
}
dst_node = SplitNode(dst_node);
if (node->GetItem(0) < dst_node->GetItem(0)) {
MergeNodeNotFull(dst_node->GetChild(0), node);
} else {
MergeNodeNotFull(dst_node->GetChild(1), node);
}
return dst_node;
}
/**
* @brief Merge node to a not-full target node
*
* Since the target node is not-full, no overflow will happen. So we have
* nothing to return.
*
* @param dst_node the target not-full node, that is the type is either
* 2-node or 3-node, but not 4-node
* @param node the source node we will merge from, type must be 2-node
*/
void Tree234::MergeNodeNotFull(Node *dst_node, Node *node) {
assert(dst_node && node && !dst_node->IsFull() && node->Is2Node());
int8_t i = dst_node->InsertItem(node->GetItem(0));
dst_node->SetChild(i, node->GetChild(0));
dst_node->SetChild(i + 1, node->GetChild(1));
}
/**
* @brief Split a 4-node to 1 parent and 2 children, and return the parent
* node
* @param node the node to split, it must be a 4-node
* @return split parent node
*/
Node *Tree234::SplitNode(Node *node) {
assert(node->GetCount() == 3);
Node *left = node;
Node *right = new Node(node->GetItem(2));
right->SetChild(0, node->GetChild(2));
right->SetChild(1, node->GetChild(3));
Node *parent = new Node(node->GetItem(1));
parent->SetChild(0, left);
parent->SetChild(1, right);
left->SetCount(1);
return parent;
}
/**
* @brief A handy function to try if we can do a left rotate to the target
* node
*
* Given two node, the parent and the target child, the left rotate
* operation is uniquely identified. The source node must be the right
* sibling of the target child. The operation can be successfully done if
* the to_child has a right sibling and its right sibling is not 2-node.
*
* @param parent the parent node in this left rotate operation
* @param to_child the target child of this left rotate operation. In our
* case, this node is always 2-node
* @return true if we successfully do the rotate. false if the
* requirements are not fulfilled.
*/
bool Tree234::TryLeftRotate(Node *parent, Node *to_child) {
int to_child_index = parent->GetChildIndex(to_child);
// child is right most, can not do left rotate to it
if (to_child_index >= parent->GetCount()) {
return false;
}
Node *right_sibling = parent->GetChild(to_child_index + 1);
// right sibling is 2-node. can not do left rotate.
if (right_sibling->Is2Node()) {
return false;
}
LeftRotate(parent, to_child_index);
return true;
}
/**
* @brief A handy function to try if we can do a right rotate to the target
* node
*
* Given two node, the parent and the target child, the right rotate
* operation is uniquely identified. The source node must be the left
* sibling of the target child. The operation can be successfully done if
* the to_child has a left sibling and its left sibling is not 2-node.
*
* @param parent the parent node in this right rotate operation
* @param to_child the target child of this right rotate operation. In our
* case, it is always 2-node
* @return true if we successfully do the rotate. false if the
* requirements are not fulfilled.
*/
bool Tree234::TryRightRotate(Node *parent, Node *to_child) {
int8_t to_child_index = parent->GetChildIndex(to_child);
// child is left most, can not do right rotate to it
if (to_child_index <= 0) {
return false;
}
Node *left_sibling = parent->GetChild(to_child_index - 1);
// right sibling is 2-node. can not do left rotate.
if (left_sibling->Is2Node()) {
return false;
}
RightRotate(parent, to_child_index - 1);
return true;
}
/**
* @brief Do the actual right rotate operation
*
* Given parent node, and the pivot item index, the right rotate operation
* is uniquely identified. The function assume the requirements are
* fulfilled and won't do any extra check. This function is call by
* TryRightRotate(), and the condition checking should be done before call
* it.
*
* @param parent the parent node in this right rotate operation
* @param index the pivot item index of this right rotate operation.
*/
void Tree234::RightRotate(Node *parent, int8_t index) {
Node *left = parent->GetItemLeftChild(index);
Node *right = parent->GetItemRightChild(index);
assert(left && left->Is34Node());
assert(right && right->Is2Node());
right->InsertItemByIndex(0, parent->GetItem(index),
left->GetRightmostChild(), true);
parent->SetItem(index, left->GetMaxItem());
left->RemoveItemByIndex(left->GetCount() - 1, true);
}
/**
* @brief Do the actual left rotate operation
*
* Given parent node, and the pivot item index, the left rotate operation is
* uniquely identified. The function assume the requirements are fulfilled
* and won't do any extra check. This function is call by TryLeftRotate(),
* and the condition checking should be done before call it.
*
* @param parent the parent node in this right rotate operation
* @param index the pivot item index of this right rotate operation.
*/
void Tree234::LeftRotate(Node *parent, int8_t index) {
Node *left = parent->GetItemLeftChild(index);
Node *right = parent->GetItemRightChild(index);
assert(right && right->Is34Node());
assert(left && left->Is2Node());
left->InsertItemByIndex(left->GetCount(), parent->GetItem(index),
right->GetLeftmostChild(), false);
parent->SetItem(index, right->GetMinItem());
right->RemoveItemByIndex(0, false);
}
/**
* @brief Merge the item at index of the parent node, and its left and right
* child
*
* the left and right child node must be 2-node. The 3 items will be merged
* into a 4-node. In our case the parent can be a 2-node iff it is the root.
* Otherwise, it must be 3-node or 4-node.
*
* @param parent the parent node in the merging operation
* @param index the item index of the parent node that involved in the
* merging
* @return the merged 4-node
*/
Node *Tree234::Merge(Node *parent, int8_t index) {
assert(parent);
// bool is_parent_2node = parent->Is2Node();
Node *left_child = parent->GetItemLeftChild(index);
Node *right_child = parent->GetItemRightChild(index);
assert(left_child->Is2Node() && right_child->Is2Node());
int64_t item = parent->GetItem(index);
// 1. merge parent's item and right child to left child
left_child->SetItem(1, item);
left_child->SetItem(2, right_child->GetItem(0));
left_child->SetChild(2, right_child->GetChild(0));
left_child->SetChild(3, right_child->GetChild(1));
left_child->SetCount(3);
// 2. remove the parent's item
parent->RemoveItemByIndex(index, true);
// 3. delete the unused right child
delete right_child;
return left_child;
}
/**
* @brief Remove item from tree
* @param item item to remove
* @return true if item found and removed, false otherwise
*/
bool Tree234::Remove(int64_t item) { return RemovePreMerge(root_, item); }
/**
* @brief Main function implement the pre-merge remove operation
* @param node the tree to remove item from
* @param item item to remove
* @return true if remove success, false otherwise
*/
bool Tree234::RemovePreMerge(Node *node, int64_t item) {
while (node) {
if (node->IsLeaf()) {
if (node->Contains(item)) {
if (node->Is2Node()) {
// node must be root
delete node;
root_ = nullptr;
} else {
node->RemoveItemByIndex(node->GetItemIndex(item), true);
}
return true;
}
return false;
}
// node is internal
if (node->Contains(item)) {
int8_t index = node->GetItemIndex(item);
// Here is important!!! What we do next depend on its children's
// state. Why?
Node *left_child = node->GetItemLeftChild(index);
Node *right_child = node->GetItemRightChild(index);
assert(left_child && right_child);
if (left_child->Is2Node() && right_child->Is2Node()) {
// both left and right child are 2-node,we should not modify
// current node in this situation. Because we are going to do
// merge with its children which will move target item to next
// layer. so if we replace the item with successor or
// predecessor now, when we do the recursive remove with
// successor or predecessor, we will result in removing the just
// replaced one in the merged node. That's not what we want.
// we need to convert the child 2-node to 3-node or 4-node
// first. First we try to see if any of them can convert to
// 3-node by rotate. By using rotate we keep the empty house for
// the future insertion which will be more efficient than merge.
//
// | ? | node | ? |
// / | | \
// / | | \
// / | | \
// / | | \
// / | | \
// / | | \
// ? left_child right_child ?
//
// node must be the root
if (node->Is2Node()) {
// this means we can't avoid merging the target item into
// next layer, and this will cause us do different process
// compared with other cases
Node *new_root = Merge(node, index);
delete root_;
root_ = new_root;
node = root_;
// now node point to the
continue;
}
// here means we can avoid merging the target item into next
// layer. So we convert one of its left or right child to 3-node
// and then do the successor or predecessor swap and recursive
// remove the next layer will successor or predecessor.
do {
if (index > 0) {
// left_child has left-sibling, we check if we can do a
// rotate
Node *left_sibling = node->GetItemLeftChild(index - 1);
if (left_sibling->Is34Node()) {
RightRotate(node, index - 1);
break;
}
}
if (index < node->GetCount() - 1) {
// right_child has right-sibling, we check if we can do
// a rotate
Node *right_sibling =
node->GetItemRightChild(index + 1);
if (right_sibling->Is34Node()) {
LeftRotate(node, index + 1);
break;
}
}
// we do a merge. We avoid merging the target item, which
// may trigger another merge in the recursion process.
if (index > 0) {
Merge(node, index - 1);
break;
}
Merge(node, index + 1);
} while (false);
}
// refresh the left_child and right_child since they may be invalid
// because of merge
left_child = node->GetItemLeftChild(index);
right_child = node->GetItemRightChild(index);
if (left_child->Is34Node()) {
int64_t predecessor_item = GetTreeMaxItem(left_child);
node->SetItem(node->GetItemIndex(item), predecessor_item);
node = left_child;
item = predecessor_item;
continue;
}
if (right_child->Is34Node()) {
int64_t successor_item = GetTreeMinItem(right_child);
node->SetItem(node->GetItemIndex(item), successor_item);
node = right_child;
item = successor_item;
continue;
}
}
Node *next_node = node->GetNextPossibleChild(item);
if (next_node->Is34Node()) {
node = next_node;
continue;
}
if (TryRightRotate(node, next_node)) {
node = next_node;
continue;
}
if (TryLeftRotate(node, next_node)) {
node = next_node;
continue;
}
// get here means both left sibling and right sibling of next_node is
// 2-node, so we do merge
int8_t child_index = node->GetChildIndex(next_node);
if (child_index > 0) {
node = Merge(node, child_index - 1);
} else {
node = Merge(node, child_index);
}
} // while
return false;
}
/**
* @brief Get the max item of the tree
* @param tree the tree we will get item from
* @return max item of the tree
*/
int64_t Tree234::GetTreeMaxItem(Node *tree) {
assert(tree);
int64_t max = 0;
while (tree) {
max = tree->GetMaxItem();
tree = tree->GetRightmostChild();
}
return max;
}
/**
* @brief Get the min item of the tree
* @param tree the tree we will get item from
* @return min item of the tree
*/
int64_t Tree234::GetTreeMinItem(Node *tree) {
assert(tree);
int64_t min = 0;
while (tree) {
min = tree->GetMinItem();
tree = tree->GetLeftmostChild();
}
return min;
}
/**
* @brief Print tree into a dot file
* @param file_name output file name, if nullptr then use "out.dot" as default
*/
void Tree234::Print(const char *file_name) {
if (!file_name) {
file_name = "out.dot";
}
std::ofstream ofs;
ofs.open(file_name);
if (!ofs) {
std::cout << "create tree dot file failed, " << file_name << std::endl;
return;
}
ofs << "digraph G {\n";
ofs << "node [shape=record]\n";
int64_t index = 0;
/** @brief This is a helper structure to do a level order traversal to print
* the tree. */
struct NodeInfo {
Node *node; ///< tree node
int64_t index; ///< node index of level order that used when draw the
///< link between child and parent
};
std::queue<NodeInfo> q;
if (root_) {
// print root node
PrintNode(ofs, root_, -1, index, 0);
NodeInfo ni{};
ni.node = root_;
ni.index = index;
q.push(ni);
while (!q.empty()) {
NodeInfo node_info = q.front();
q.pop();
assert(node_info.node->GetCount() > 0);
if (!node_info.node->IsLeaf()) {
if (node_info.node->GetCount() > 0) {
PrintNode(ofs, node_info.node->GetChild(0), node_info.index,
++index, 0);
ni.node = node_info.node->GetChild(0);
ni.index = index;
q.push(ni);
PrintNode(ofs, node_info.node->GetChild(1), node_info.index,
++index, 1);
ni.node = node_info.node->GetChild(1);
ni.index = index;
q.push(ni);
}
if (node_info.node->GetCount() > 1) {
PrintNode(ofs, node_info.node->GetChild(2), node_info.index,
++index, 2);
ni.node = node_info.node->GetChild(2);
ni.index = index;
q.push(ni);
}
if (node_info.node->GetCount() > 2) {
PrintNode(ofs, node_info.node->GetChild(3), node_info.index,
++index, 3);
ni.node = node_info.node->GetChild(3);
ni.index = index;
q.push(ni);
}
}
}
}
ofs << "}\n";
ofs.close();
}
/**
* @brief Print the tree to a dot file. You can convert it to picture with
* graphviz
* @param ofs output file stream to print to
* @param node current node to print
* @param parent_index current node's parent node index, this is used to draw
* the link from parent to current node
* @param index current node's index of level order which is used to name the
* node in dot file
* @param parent_child_index the index that current node in parent's children
* array, range in [0,4), help to locate the start position of the link between
* nodes
*/
void Tree234::PrintNode(std::ofstream &ofs, Node *node, int64_t parent_index,
int64_t index, int8_t parent_child_index) {
assert(node);
switch (node->GetCount()) {
case 1:
ofs << "node_" << index << " [label=\"<f0> " << node->GetItem(0)
<< "\"]\n";
break;
case 2:
ofs << "node_" << index << " [label=\"<f0> " << node->GetItem(0)
<< " | <f1> " << node->GetItem(1) << "\"]\n";
break;
case 3:
ofs << "node_" << index << " [label=\"<f0> " << node->GetItem(0)
<< " | <f1> " << node->GetItem(1) << "| <f2> "
<< node->GetItem(2) << "\"]\n";
break;
default:
break;
}
// draw the edge
if (parent_index >= 0) {
ofs << "node_" << parent_index << ":f"
<< (parent_child_index == 0 ? 0 : parent_child_index - 1) << ":"
<< (parent_child_index == 0 ? "sw" : "se") << " -> node_" << index
<< "\n";
}
}
} // namespace tree_234
} // namespace data_structures
/** @brief simple test to insert a given array and delete some item, and print
* the tree*/
static void test1() {
std::array<int16_t, 13> arr = {3, 1, 5, 4, 2, 9, 10, 8, 7, 6, 16, 13, 14};
data_structures::tree_234::Tree234 tree;
for (auto i : arr) {
tree.Insert(i);
}
// tree.Remove(10);
tree.Remove(5);
tree.Print();
}
/**
* @brief simple test to insert continuous number of range [0, n), and print
* the tree
* @param n upper bound of the range number to insert
*/
static void test2(int64_t n) {
data_structures::tree_234::Tree234 tree;
for (int64_t i = 0; i < n; i++) {
tree.Insert(i);
}
tree.Traverse();
tree.Print((std::to_string(n) + ".dot").c_str());
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
if (argc < 2) {
test1(); // execute 1st test
} else {
test2(std::stoi(argv[1])); // execute 2nd test
}
return 0;
}