TheAlgorithms-C-Plus-Plus/backtracking/n_queens.cpp
2020-08-09 14:00:54 -05:00

124 lines
3.1 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @file n_queens.cpp
* @brief [Eight Queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle)
* puzzle
*
* @details
* The **eight queens puzzle** is the problem of placing eight chess queens on
* an 8×8 chessboard so that no two queens threaten each other; thus, a solution
* requires that no two queens share the same row, column, or diagonal. The
* eight queens puzzle is an example of the more general **n queens problem** of
* placing n non-attacking queens on an n×n chessboard, for which solutions
* exist for all natural numbers n with the exception of n = 2 and n = 3.
*
* @author Unknown author
* @author [David Leal](https://github.com/Panquesito7)
*
*/
#include <iostream>
#include <array>
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* Utility function to print matrix
* @tparam n number of matrix size
* @param board matrix where numbers are saved
*/
template <size_t n>
void printSolution(const std::array<std::array<int, n>, n> &board) {
std::cout << "\n";
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
std::cout << "" << board[i][j];
}
std::cout << "\n";
}
}
/**
* Check if a queen can be placed on matrix
* @tparam n number of matrix size
* @param board matrix where numbers are saved
* @param row current index in rows
* @param col current index in columns
* @returns `true` if queen can be placed on matrix
* @returns `false` if queen can't be placed on matrix
*/
template <size_t n>
bool isSafe(const std::array<std::array<int, n>, n> &board, const int &row,
const int &col) {
int i = 0, j = 0;
// Check this row on left side
for (i = 0; i < col; i++) {
if (board[row][i]) {
return false;
}
}
// Check upper diagonal on left side
for (i = row, j = col; i >= 0 && j >= 0; i--, j--) {
if (board[i][j]) {
return false;
}
}
// Check lower diagonal on left side
for (i = row, j = col; j >= 0 && i < n; i++, j--) {
if (board[i][j]) {
return false;
}
}
return true;
}
/**
* Solve n queens problem
* @tparam n number of matrix size
* @param board matrix where numbers are saved
* @param col current index in columns
*/
template <size_t n>
void solveNQ(std::array<std::array<int, n>, n> board, const int &col) {
if (col >= n) {
printSolution<n>(board);
return;
}
// Consider this column and try placing
// this queen in all rows one by one
for (int i = 0; i < n; i++) {
// Check if queen can be placed
// on board[i][col]
if (isSafe<n>(board, i, col)) {
// Place this queen in matrix
board[i][col] = 1;
// Recur to place rest of the queens
solveNQ<n>(board, col + 1);
board[i][col] = 0; // backtrack
}
}
}
} // namespace backtracking
/**
* Main function
*/
int main() {
const int n = 4;
std::array<std::array<int, n>, n> board = {
std::array<int, n>({0, 0, 0, 0}),
std::array<int, n>({0, 0, 0, 0}),
std::array<int, n>({0, 0, 0, 0}),
std::array<int, n>({0, 0, 0, 0})
};
backtracking::solveNQ<n>(board, 0);
return 0;
}