TheAlgorithms-C-Plus-Plus/backtracking/sudoku_solve.cpp
David Leal 4e3abd4601
[feat/fix/docs]: Improvements in the backtracking folder (#1553)
* [feat/fix/docs]: Improvements in the...

...`backtracking` folder, and minor fixes in the `others/iterative_tree_traversals.cpp` and the `math/check_prime.cpp` files.

* clang-format and clang-tidy fixes for 9cc3951d

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Abhinn Mishra <49574460+mishraabhinn@users.noreply.github.com>
2021-10-29 13:05:46 -05:00

174 lines
5.7 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @file
* @brief [Sudoku Solver](https://en.wikipedia.org/wiki/Sudoku) algorithm.
*
* @details
* Sudoku (数独, sūdoku, digit-single) (/suːˈdoʊkuː/, /-ˈdɒk-/, /sə-/,
* originally called Number Place) is a logic-based, combinatorial
* number-placement puzzle. In classic sudoku, the objective is to fill a 9×9
* grid with digits so that each column, each row, and each of the nine 3×3
* subgrids that compose the grid (also called "boxes", "blocks", or "regions")
* contain all of the digits from 1 to 9. The puzzle setter provides a
* partially completed grid, which for a well-posed puzzle has a single
* solution.
*
* @author [DarthCoder3200](https://github.com/DarthCoder3200)
* @author [David Leal](https://github.com/Panquesito7)
*/
#include <array> /// for assert
#include <iostream> /// for IO operations
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* @namespace sudoku_solver
* @brief Functions for the [Sudoku
* Solver](https://en.wikipedia.org/wiki/Sudoku) implementation
*/
namespace sudoku_solver {
/**
* @brief Check if it's possible to place a number (`no` parameter)
* @tparam V number of vertices in the array
* @param mat matrix where numbers are saved
* @param i current index in rows
* @param j current index in columns
* @param no number to be added in matrix
* @param n number of times loop will run
* @returns `true` if 'mat' is different from 'no'
* @returns `false` if 'mat' equals to 'no'
*/
template <size_t V>
bool isPossible(const std::array<std::array<int, V>, V> &mat, int i, int j,
int no, int n) {
/// `no` shouldn't be present in either row i or column j
for (int x = 0; x < n; x++) {
if (mat[x][j] == no || mat[i][x] == no) {
return false;
}
}
/// `no` shouldn't be present in the 3*3 subgrid
int sx = (i / 3) * 3;
int sy = (j / 3) * 3;
for (int x = sx; x < sx + 3; x++) {
for (int y = sy; y < sy + 3; y++) {
if (mat[x][y] == no) {
return false;
}
}
}
return true;
}
/**
* @brief Utility function to print the matrix
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the
* differences
* @param n number of times loop will run
* @return void
*/
template <size_t V>
void printMat(const std::array<std::array<int, V>, V> &mat,
const std::array<std::array<int, V>, V> &starting_mat, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (starting_mat[i][j] != mat[i][j]) {
std::cout << "\033[93m" << mat[i][j] << "\033[0m"
<< " ";
} else {
std::cout << mat[i][j] << " ";
}
if ((j + 1) % 3 == 0) {
std::cout << '\t';
}
}
if ((i + 1) % 3 == 0) {
std::cout << std::endl;
}
std::cout << std::endl;
}
}
/**
* @brief Main function to implement the Sudoku algorithm
* @tparam V number of vertices in array
* @param mat matrix where numbers are saved
* @param starting_mat copy of mat, required by printMat for highlighting the
* differences
* @param i current index in rows
* @param j current index in columns
* @returns `true` if 'no' was placed
* @returns `false` if 'no' was not placed
*/
template <size_t V>
bool solveSudoku(std::array<std::array<int, V>, V> &mat,
const std::array<std::array<int, V>, V> &starting_mat, int i,
int j) {
/// Base Case
if (i == 9) {
/// Solved for 9 rows already
printMat<V>(mat, starting_mat, 9);
return true;
}
/// Crossed the last Cell in the row
if (j == 9) {
return solveSudoku<V>(mat, starting_mat, i + 1, 0);
}
/// Blue Cell - Skip
if (mat[i][j] != 0) {
return solveSudoku<V>(mat, starting_mat, i, j + 1);
}
/// White Cell
/// Try to place every possible no
for (int no = 1; no <= 9; no++) {
if (isPossible<V>(mat, i, j, no, 9)) {
/// Place the 'no' - assuming a solution will exist
mat[i][j] = no;
bool solution_found = solveSudoku<V>(mat, starting_mat, i, j + 1);
if (solution_found) {
return true;
}
/// Couldn't find a solution
/// loop will place the next `no`.
}
}
/// Solution couldn't be found for any of the numbers provided
mat[i][j] = 0;
return false;
}
} // namespace sudoku_solver
} // namespace backtracking
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
const int V = 9;
std::array<std::array<int, V>, V> mat = {
std::array<int, V>{5, 3, 0, 0, 7, 0, 0, 0, 0},
std::array<int, V>{6, 0, 0, 1, 9, 5, 0, 0, 0},
std::array<int, V>{0, 9, 8, 0, 0, 0, 0, 6, 0},
std::array<int, V>{8, 0, 0, 0, 6, 0, 0, 0, 3},
std::array<int, V>{4, 0, 0, 8, 0, 3, 0, 0, 1},
std::array<int, V>{7, 0, 0, 0, 2, 0, 0, 0, 6},
std::array<int, V>{0, 6, 0, 0, 0, 0, 2, 8, 0},
std::array<int, V>{0, 0, 0, 4, 1, 9, 0, 0, 5},
std::array<int, V>{0, 0, 0, 0, 8, 0, 0, 7, 9}};
backtracking::sudoku_solver::printMat<V>(mat, mat, 9);
std::cout << "Solution " << std::endl;
std::array<std::array<int, V>, V> starting_mat = mat;
backtracking::sudoku_solver::solveSudoku<V>(mat, starting_mat, 0, 0);
return 0;
}