TheAlgorithms-C-Plus-Plus/backtracking/knight_tour.cpp
2019-11-28 13:37:04 +01:00

69 lines
1.5 KiB
C++

#include<bits/stdc++.h>
# define n 8
/**
A knight's tour is a sequence of moves of a knight on a chessboard
such that the knight visits every square only once. If the knight
ends on a square that is one knight's move from the beginning
square (so that it could tour the board again immediately, following
the same path), the tour is closed; otherwise, it is open.
**/
using namespace std;
bool issafe(int x,int y,int sol[n][n])
{
return (x<n && x>=0 && y<n && y>=0 && sol[x][y]==-1);
}
bool solve(int x,int y, int mov, int sol[n][n], int xmov[n], int ymov[n])
{
int k,xnext,ynext;
if(mov == n*n)
return true;
for(k=0;k<8;k++)
{
xnext=x+xmov[k];
ynext=y+ymov[k];
if(issafe(xnext,ynext,sol))
{
sol[xnext][ynext]=mov;
if(solve(xnext,ynext,mov+1,sol,xmov,ymov)==true)
return true;
else
sol[xnext][ynext]=-1;
}
}
return false;
}
int main()
{
//initialize();
int sol[n][n];
int i,j;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
sol[i][j]=-1;
int xmov[8] = { 2, 1, -1, -2, -2, -1, 1, 2 };
int ymov[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };
sol[0][0]=0;
bool flag=solve(0,0,1,sol,xmov,ymov);
if(flag==false)
cout<<"solution doesnot exist \n";
else
{
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
cout<<sol[i][j]<<" ";
cout<<"\n";
}
}
}