TheAlgorithms-C/data_structures/binary_trees/binary_search_tree.c

247 lines
6.6 KiB
C
Raw Normal View History

2017-10-14 14:31:40 +08:00
#include <stdio.h>
#include <stdlib.h>
/* A basic unbalanced binary search tree implementation in C, with the following
functionalities implemented:
2017-12-27 22:01:50 +08:00
- Insertion
- Deletion
- Search by key value
- Listing of node keys in order of value (from left to right)
*/
2017-12-27 22:01:50 +08:00
// Node, the basic data structure in the tree
typedef struct node
{
// left child
struct node *left;
// right child
struct node *right;
// data of the node
int data;
2017-10-14 14:31:40 +08:00
} node;
// The node constructor, which receives the key value input and returns a node
// pointer
node *newNode(int data)
{
// creates a slug
node *tmp = (node *)malloc(sizeof(node));
// initializes the slug
tmp->data = data;
tmp->left = NULL;
tmp->right = NULL;
2017-10-14 14:31:40 +08:00
return tmp;
2017-10-14 14:31:40 +08:00
}
2017-12-27 22:01:50 +08:00
// Insertion procedure, which inserts the input key in a new node in the tree
node *insert(node *root, int data)
{
// If the root of the subtree is null, insert key here
if (root == NULL)
root = newNode(data);
// If it isn't null and the input key is greater than the root key, insert
// in the right leaf
else if (data > root->data)
root->right = insert(root->right, data);
// If it isn't null and the input key is lower than the root key, insert in
// the left leaf
else if (data < root->data)
root->left = insert(root->left, data);
// Returns the modified tree
return root;
2017-10-14 14:31:40 +08:00
}
2017-12-27 22:01:50 +08:00
// Utilitary procedure to find the greatest key in the left subtree
node *getMax(node *root)
{
// If there's no leaf to the right, then this is the maximum key value
if (root->right == NULL)
return root;
else
root->right = getMax(root->right);
2017-10-14 14:31:40 +08:00
}
// Deletion procedure, which searches for the input key in the tree and removes
// it if present
node *delete (node *root, int data)
{
// If the root is null, nothing to be done
if (root == NULL)
return root;
// If the input key is greater than the root's, search in the right subtree
else if (data > root->data)
root->right = delete (root->right, data);
// If the input key is lower than the root's, search in the left subtree
else if (data < root->data)
root->left = delete (root->left, data);
// If the input key matches the root's, check the following cases
// termination condition
else if (data == root->data)
{
// Case 1: the root has no leaves, remove the node
if ((root->left == NULL) && (root->right == NULL))
{
free(root);
return NULL;
}
// Case 2: the root has one leaf, make the leaf the new root and remove
// the old root
else if (root->left == NULL)
{
node *tmp = root;
root = root->right;
free(tmp);
return root;
}
else if (root->right == NULL)
{
node *tmp = root;
root = root->left;
free(tmp);
return root;
}
// Case 3: the root has 2 leaves, find the greatest key in the left
// subtree and switch with the root's
else
{
// finds the biggest node in the left branch.
node *tmp = getMax(root->left);
// sets the data of this node equal to the data of the biggest node
// (lefts)
root->data = tmp->data;
root->left = delete (root->left, tmp->data);
}
}
return root;
2017-10-14 14:31:40 +08:00
}
// Search procedure, which looks for the input key in the tree and returns 1 if
// it's present or 0 if it's not in the tree
int find(node *root, int data)
{
// If the root is null, the key's not present
if (root == NULL)
return 0;
// If the input key is greater than the root's, search in the right subtree
else if (data > root->data)
return find(root->right, data);
// If the input key is lower than the root's, search in the left subtree
else if (data < root->data)
return find(root->left, data);
// If the input and the root key match, return 1
else if (data == root->data)
return 1;
2017-10-14 14:31:40 +08:00
}
2017-12-27 22:01:50 +08:00
// Utilitary procedure to measure the height of the binary tree
int height(node *root)
{
// If the root is null, this is the bottom of the tree (height 0)
if (root == NULL)
return 0;
else
{
// Get the height from both left and right subtrees to check which is
// the greatest
int right_h = height(root->right);
int left_h = height(root->left);
// The final height is the height of the greatest subtree(left or right)
// plus 1(which is the root's level)
if (right_h > left_h)
return (right_h + 1);
else
return (left_h + 1);
}
2017-10-14 14:31:40 +08:00
}
2017-12-27 22:01:50 +08:00
// Utilitary procedure to free all nodes in a tree
void purge(node *root)
{
if (root != NULL)
{
if (root->left != NULL)
purge(root->left);
if (root->right != NULL)
purge(root->right);
free(root);
}
2017-10-14 14:31:40 +08:00
}
// Traversal procedure to list the current keys in the tree in order of value
// (from the left to the right)
void inOrder(node *root)
{
if (root != NULL)
{
inOrder(root->left);
printf("\t[ %d ]\t", root->data);
inOrder(root->right);
}
2017-10-14 14:31:40 +08:00
}
void main()
{
// this reference don't change.
// only the tree changes.
node *root = NULL;
int opt = -1;
int data = 0;
2017-10-14 14:31:40 +08:00
// event-loop.
while (opt != 0)
{
printf("\n\n[1] Insert Node\n[2] Delete Node\n[3] Find a Node\n[4] Get "
"current Height\n[5] Print Tree in Crescent Order\n[0] Quit\n");
scanf("%d", &opt); // reads the choice of the user
2017-10-14 14:31:40 +08:00
// processes the choice
switch (opt)
{
case 1:
printf("Enter the new node's value:\n");
scanf("%d", &data);
root = insert(root, data);
break;
case 2:
printf("Enter the value to be removed:\n");
if (root != NULL)
{
scanf("%d", &data);
root = delete (root, data);
}
else
printf("Tree is already empty!\n");
break;
case 3:
printf("Enter the searched value:\n");
scanf("%d", &data);
find(root, data) ? printf("The value is in the tree.\n")
: printf("The value is not in the tree.\n");
break;
case 4:
printf("Current height of the tree is: %d\n", height(root));
break;
case 5:
inOrder(root);
break;
}
}
2017-10-14 14:31:40 +08:00
// deletes the tree from the heap.
purge(root);
2017-10-14 14:31:40 +08:00
}