TheAlgorithms-C/dynamic_programming/lcs.c

154 lines
3.6 KiB
C
Raw Normal View History

/**
* @file
* @brief [Longest Common Subsequence](https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) algorithm
* @details
* From Wikipedia: The longest common subsequence (LCS) problem is the problem
* of finding the longest subsequence common to all sequences in a set of sequences
* (often just two sequences).
* @author [Kurtz](https://github.com/itskurtz)
*/
#include <stdio.h> /* for io operations */
#include <stdlib.h> /* for memory management & exit */
#include <string.h> /* for string manipulation & ooperations */
#include <assert.h> /* for asserts */
enum {LEFT, UP, DIAG};
/**
* @breif Computes LCS between s1 and s2 using a dynamic-programming approach
* @param1 s1 first null-terminated string
* @param2 s2 second null-terminated string
* @param3 l1 length of s1
* @param4 l2 length of s2
* @param5 L matrix of size l1 x l2
* @param6 B matrix of size l1 x l2
* @returns void
*/
void lcslen(const char *s1, const char *s2, int l1, int l2, int **L, int **B) {
/* B is the directions matrix
L is the LCS matrix */
int i, j;
/* loop over the simbols in my sequences
save the directions according to the LCS */
for (i = 1; i <= l1; ++i)
for (j = 1; j <= l2; ++j)
if (s1[i-1] == s2[j-1]) {
L[i][j] = 1 + L[i-1][j-1];
B[i][j] = DIAG;
}
else if (L[i-1][j] < L[i][j-1]) {
L[i][j] = L[i][j-1];
B[i][j] = LEFT;
}
else {
L[i][j] = L[i-1][j];
B[i][j] = UP;
}
}
/**
* @breif Builds the LCS according to B using a traceback approach
* @param1 s1 first null-terminated string
* @param2 l1 length of s1
* @param3 l2 length of s2
* @param4 L matrix of size l1 x l2
* @param5 B matrix of size l1 x l2
* @returns lcs longest common subsequence
*/
char *lcsbuild(const char *s1, int l1, int l2, int **L, int **B) {
int i, j, lcsl;
char *lcs;
lcsl = L[l1][l2];
/* my lcs is at least the empty symbol */
lcs = (char *)calloc(lcsl+1, sizeof(char)); /* null-terminated \0 */
if (!lcs) {
perror("calloc: ");
return NULL;
}
i = l1, j = l2;
while (i > 0 && j > 0) {
/* walk the matrix backwards */
if (B[i][j] == DIAG) {
lcs[--lcsl] = s1[i-1];
i = i - 1;
j = j - 1;
}
else if (B[i][j] == LEFT)
j = j - 1;
else
i = i - 1;
}
return lcs;
}
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
/* https://en.wikipedia.org/wiki/Subsequence#Applications */
int **L, **B, j, l1, l2;
char *s1 = "ACGGTGTCGTGCTATGCTGATGCTGACTTATATGCTA";
char *s2 = "CGTTCGGCTATCGTACGTTCTATTCTATGATTTCTAA";
char *lcs;
l1 = strlen(s1);
l2 = strlen(s2);
L = (int **)calloc(l1+1, sizeof(int *));
B = (int **)calloc(l1+1, sizeof(int *));
if (!L) {
perror("calloc: ");
exit(1);
}
if (!B) {
perror("calloc: ");
exit(1);
}
for (j = 0; j <= l1; j++) {
L[j] = (int *)calloc(l2+1, sizeof(int));
if (!L[j]) {
perror("calloc: ");
exit(1);
}
B[j] = (int *)calloc(l2+1, sizeof(int));
if (!L[j]) {
perror("calloc: ");
exit(1);
}
}
lcslen(s1, s2, l1, l2, L, B);
lcs = lcsbuild(s1, l1, l2, L, B);
assert(L[l1][l2] == 27);
assert(strcmp(lcs, "CGTTCGGCTATGCTTCTACTTATTCTA") == 0);
printf("S1: %s\tS2: %s\n", s1, s2);
printf("LCS len:%3d\n", L[l1][l2]);
printf("LCS: %s\n", lcs);
free(lcs);
for (j = 0; j <= l1; j++)
free(L[j]), free(B[j]);
free(L);
free(B);
printf("All tests have successfully passed!\n");
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
test(); // run self-test implementations
return 0;
}