TheAlgorithms-C/math/binary_exponentiation.c

66 lines
1.7 KiB
C
Raw Normal View History

/**
* @file
* @brief Calculates the nth power of a number in O(log(n)) time.
* @details
* Calculating the nth power of a number requires O(n) time using the naive
* method. This algorithm optimizes it through exponentiation by squaring.
* https://cp-algorithms.com/algebra/binary-exp.html
* @author [Praneeth Jain](https://github.com/PraneethJain)
*/
#include <assert.h> /// for assert()
#include <stdint.h> /// for int64 types
#include <stdio.h> /// for output
#include <stdlib.h> /// for exit()
/**
* @brief Determines base raised to an exponent via binary exponentiation.
* @param base of the given number
* @param exponent of the given number
* @return a raised to the nth power
* @warning
2023-09-28 02:02:02 +08:00
* can overflow very quickly.
*/
int64_t binary_exponentiation(int64_t base, uint64_t exponent)
{
int64_t result = 1;
while (exponent > 0)
{
if (exponent % 2 == 1) // If the current bit is 1
{
result *= base; // Then it must be multiplied to the result
}
base *= base; // Square the base
exponent >>= 1; // Move to the next bit
}
return result;
}
/**
* @brief self-test implementation
* @return void
*/
static void tests()
{
assert(binary_exponentiation(5, 3) == 125);
assert(binary_exponentiation(-7, 3) == -343);
assert(binary_exponentiation(9, 0) == 1);
assert(binary_exponentiation(-123, 0) == 1);
assert(binary_exponentiation(3, 5) == 243);
assert(binary_exponentiation(-4, 5) == -1024);
printf("All tests have successfully passed!\n");
}
/**
* @brief Main function
* @return 0 on exit
*/
int main()
{
tests(); // run self-test implementations
return 0;
}