2020-05-26 05:02:45 +08:00
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
*
|
|
|
|
* Library functions to compute QR decomposition of a
|
|
|
|
* given matrix.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef QR_DECOMPOSE_H
|
|
|
|
#define QR_DECOMPOSE_H
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
2020-05-26 06:27:41 +08:00
|
|
|
#include <stdlib.h>
|
2020-05-26 05:02:45 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* function to display matrix on stdout
|
|
|
|
*/
|
|
|
|
void print_matrix(double **A, /**< matrix to print */
|
|
|
|
int M, /**< number of rows of matrix */
|
|
|
|
int N) /**< number of columns of matrix */
|
|
|
|
{
|
|
|
|
for (int row = 0; row < M; row++)
|
|
|
|
{
|
|
|
|
for (int col = 0; col < N; col++)
|
|
|
|
printf("% 9.3g\t", A[row][col]);
|
|
|
|
putchar('\n');
|
|
|
|
}
|
|
|
|
putchar('\n');
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute dot product of two vectors of equal lengths
|
|
|
|
*
|
|
|
|
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ and
|
|
|
|
* \f$\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\f$ then
|
|
|
|
* \f$\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\f$
|
|
|
|
*
|
|
|
|
* \returns \f$\vec{a}\cdot\vec{b}\f$
|
|
|
|
**/
|
|
|
|
double vector_dot(double *a, double *b, int L)
|
|
|
|
{
|
|
|
|
double mag = 0.f;
|
|
|
|
for (int i = 0; i < L; i++)
|
|
|
|
mag += a[i] * b[i];
|
|
|
|
|
|
|
|
return mag;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute magnitude of vector.
|
|
|
|
*
|
|
|
|
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ then
|
|
|
|
* \f$\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\f$
|
|
|
|
*
|
|
|
|
* \returns \f$\left|\vec{a}\right|\f$
|
|
|
|
**/
|
|
|
|
double vector_mag(double *vector, int L)
|
|
|
|
{
|
|
|
|
double dot = vector_dot(vector, vector, L);
|
|
|
|
return sqrt(dot);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute projection of vector \f$\vec{a}\f$ on \f$\vec{b}\f$ defined as
|
|
|
|
* \f[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\f]
|
|
|
|
*
|
|
|
|
* \returns NULL if error, otherwise pointer to output
|
|
|
|
**/
|
|
|
|
double *vector_proj(double *a, double *b, double *out, int L)
|
|
|
|
{
|
|
|
|
const double num = vector_dot(a, b, L);
|
|
|
|
const double deno = vector_dot(b, b, L);
|
|
|
|
if (deno == 0) /*! check for division by zero */
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
const double scalar = num / deno;
|
|
|
|
for (int i = 0; i < L; i++)
|
|
|
|
out[i] = scalar * b[i];
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute vector subtraction
|
|
|
|
*
|
|
|
|
* \f$\vec{c}=\vec{a}-\vec{b}\f$
|
|
|
|
*
|
|
|
|
* \returns pointer to output vector
|
|
|
|
**/
|
|
|
|
double *vector_sub(double *a, /**< minuend */
|
|
|
|
double *b, /**< subtrahend */
|
|
|
|
double *out, /**< resultant vector */
|
|
|
|
int L /**< length of vectors */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < L; i++)
|
|
|
|
out[i] = a[i] - b[i];
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Decompose matrix \f$A\f$ using [Gram-Schmidt process](https://en.wikipedia.org/wiki/QR_decomposition).
|
|
|
|
*
|
|
|
|
* \f{eqnarray*}{
|
|
|
|
* \text{given that}\quad A &=& \left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\
|
|
|
|
* \text{where}\quad\mathbf{a}_i &=& \left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column vectors)}\\
|
|
|
|
* \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i -\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\
|
|
|
|
* \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\
|
|
|
|
* Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_{N-1}\end{bmatrix}\\
|
|
|
|
* R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\
|
|
|
|
* 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
|
|
|
|
* 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
|
|
|
|
* \vdots & \vdots & \vdots & \ddots
|
|
|
|
* \end{bmatrix}\\
|
|
|
|
* \f}
|
|
|
|
**/
|
|
|
|
void qr_decompose(double **A, /**< input matrix to decompose */
|
|
|
|
double **Q, /**< output decomposed matrix */
|
|
|
|
double **R, /**< output decomposed matrix */
|
|
|
|
int M, /**< number of rows of matrix A */
|
|
|
|
int N /**< number of columns of matrix A */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
double *col_vector = (double *)malloc(M * sizeof(double));
|
|
|
|
double *col_vector2 = (double *)malloc(M * sizeof(double));
|
|
|
|
double *tmp_vector = (double *)malloc(M * sizeof(double));
|
|
|
|
for (int i = 0; i < N; i++) /* for each column => R is a square matrix of NxN */
|
|
|
|
{
|
|
|
|
for (int j = 0; j < i; j++) /* second dimension of column */
|
|
|
|
R[i][j] = 0.; /* make R upper triangular */
|
|
|
|
|
|
|
|
/* get corresponding Q vector */
|
|
|
|
for (int j = 0; j < M; j++)
|
|
|
|
{
|
|
|
|
tmp_vector[j] = A[j][i]; /* accumulator for uk */
|
|
|
|
col_vector[j] = A[j][i];
|
|
|
|
}
|
|
|
|
for (int j = 0; j < i; j++)
|
|
|
|
{
|
|
|
|
for (int k = 0; k < M; k++)
|
|
|
|
col_vector2[k] = Q[k][j];
|
|
|
|
vector_proj(col_vector, col_vector2, col_vector2, M);
|
|
|
|
vector_sub(tmp_vector, col_vector2, tmp_vector, M);
|
|
|
|
}
|
|
|
|
double mag = vector_mag(tmp_vector, M);
|
|
|
|
for (int j = 0; j < M; j++)
|
|
|
|
Q[j][i] = tmp_vector[j] / mag;
|
|
|
|
|
|
|
|
/* compute upper triangular values of R */
|
|
|
|
for (int kk = 0; kk < M; kk++)
|
|
|
|
col_vector[kk] = Q[kk][i];
|
|
|
|
for (int k = i; k < N; k++)
|
|
|
|
{
|
|
|
|
for (int kk = 0; kk < M; kk++)
|
|
|
|
col_vector2[kk] = A[kk][k];
|
|
|
|
R[i][k] = vector_dot(col_vector, col_vector2, M);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
free(col_vector);
|
|
|
|
free(col_vector2);
|
|
|
|
free(tmp_vector);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QR_DECOMPOSE_H
|