2020-03-30 12:24:22 +08:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
long count_divisors(long long n)
|
2020-03-30 20:42:43 +08:00
|
|
|
/*
|
|
|
|
If x = a * b, then both a and b are divisors of x.
|
|
|
|
Since multiplication is commutative, we only need to search
|
|
|
|
till a maximum of a=b = a^2 i.e., till sqrt(x).
|
|
|
|
At every integer till then, there are eaxctly 2 divisors
|
|
|
|
and at a=b, there is only one divisor.
|
|
|
|
*/
|
2020-03-30 12:24:22 +08:00
|
|
|
{
|
|
|
|
long num_divisors = 0;
|
|
|
|
|
|
|
|
for (long long i = 1; i < sqrtl(n) + 1; i++)
|
2020-03-30 20:42:43 +08:00
|
|
|
if (n % i == 0)
|
2020-03-30 12:24:22 +08:00
|
|
|
num_divisors += 2;
|
2020-03-30 20:42:43 +08:00
|
|
|
else if (i * i == n)
|
|
|
|
num_divisors += 1;
|
2020-03-30 12:24:22 +08:00
|
|
|
|
|
|
|
return num_divisors;
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
|
|
{
|
|
|
|
int MAX_DIVISORS = 500;
|
|
|
|
long i = 1, num_divisors;
|
|
|
|
long long triangle_number = 1;
|
|
|
|
|
|
|
|
if (argc == 2)
|
|
|
|
MAX_DIVISORS = atoi(argv[1]);
|
|
|
|
|
|
|
|
while(1)
|
|
|
|
{
|
|
|
|
i++;
|
|
|
|
triangle_number += i;
|
|
|
|
num_divisors = count_divisors(triangle_number);
|
|
|
|
if (num_divisors > MAX_DIVISORS)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("First Triangle number with more than %d divisors: %lld\n", MAX_DIVISORS, triangle_number);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|