TheAlgorithms-C/project_euler/problem_12/sol1.c

46 lines
1.1 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
long count_divisors(long long n)
2020-03-30 20:42:43 +08:00
/*
If x = a * b, then both a and b are divisors of x.
Since multiplication is commutative, we only need to search
till a maximum of a=b = a^2 i.e., till sqrt(x).
At every integer till then, there are eaxctly 2 divisors
and at a=b, there is only one divisor.
*/
{
long num_divisors = 0;
for (long long i = 1; i < sqrtl(n) + 1; i++)
2020-03-30 20:42:43 +08:00
if (n % i == 0)
num_divisors += 2;
2020-03-30 20:42:43 +08:00
else if (i * i == n)
num_divisors += 1;
return num_divisors;
}
int main(int argc, char **argv)
{
int MAX_DIVISORS = 500;
long i = 1, num_divisors;
long long triangle_number = 1;
if (argc == 2)
MAX_DIVISORS = atoi(argv[1]);
while(1)
{
i++;
triangle_number += i;
num_divisors = count_divisors(triangle_number);
if (num_divisors > MAX_DIVISORS)
break;
}
printf("First Triangle number with more than %d divisors: %lld\n", MAX_DIVISORS, triangle_number);
return 0;
}