Update binary_search_tree.c

This commit is contained in:
Gabriel 2017-12-27 12:01:50 -02:00 committed by GitHub
parent aef7477934
commit 0261e53734
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,12 +1,21 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
/* A basic unbalanced binary search tree implementation in C, with the following functionalities implemented:
- Insertion
- Deletion
- Search by key value
- Listing of node keys in order of value (from left to right)
*/
// Node, the basic data structure in the tree
typedef struct node{ typedef struct node{
struct node* left; struct node* left;
struct node* right; struct node* right;
int data; int data;
} node; } node;
// The node constructor, which receives the key value input and returns a node pointer
node* newNode(int data){ node* newNode(int data){
node* tmp = (node*)malloc(sizeof(node)); node* tmp = (node*)malloc(sizeof(node));
tmp->data = data; tmp->data = data;
@ -16,51 +25,62 @@ node* newNode(int data){
return tmp; return tmp;
} }
// Insertion procedure, which inserts the input key in a new node in the tree
node* insert(node* root, int data){ node* insert(node* root, int data){
// If the root of the subtree is null, insert key here
if (root == NULL) if (root == NULL)
root = newNode(data); root = newNode(data);
// If it isn't null and the input key is greater than the root key, insert in the right leaf
else if (data > root->data) else if (data > root->data)
root->right = insert(root->right, data); root->right = insert(root->right, data);
// If it isn't null and the input key is lower than the root key, insert in the left leaf
else if (data < root->data) else if (data < root->data)
root->left = insert(root->left, data); root->left = insert(root->left, data);
// Returns the modified tree
return root; return root;
} }
// Utilitary procedure to find the greatest key in the left subtree
node* getMax(node* root){ node* getMax(node* root){
// If there's no leaf to the right, then this is the maximum key value
if (root->right == NULL) if (root->right == NULL)
return root; return root;
else else
root->right = getMax(root->right); root->right = getMax(root->right);
} }
// Deletion procedure, which searches for the input key in the tree and removes it if present
node* delete(node* root, int data){ node* delete(node* root, int data){
// If the root is null, nothing to be done
if (root == NULL) if (root == NULL)
return root; return root;
// If the input key is greater than the root's, search in the right subtree
else if (data > root->data) else if (data > root->data)
root->right = delete(root->right, data); root->right = delete(root->right, data);
// If the input key is lower than the root's, search in the left subtree
else if (data < root->data) else if (data < root->data)
root->left = delete(root->left, data); root->left = delete(root->left, data);
// If the input key matches the root's, check the following cases
else if (data == root->data){ else if (data == root->data){
// Case 1: the root has no leaves, remove the node
if ((root->left == NULL) && (root->right == NULL)){ if ((root->left == NULL) && (root->right == NULL)){
free(root); free(root);
return NULL; return NULL;
} }
// Case 2: the root has one leaf, make the leaf the new root and remove the old root
else if (root->left == NULL){ else if (root->left == NULL){
node* tmp = root->right; node* tmp = root;
free(root); root = root->right;
return tmp; free(tmp);
return root;
} }
else if (root->right == NULL){ else if (root->right == NULL){
node* tmp = root->left; node* tmp = root;
free(root); root = root->left;
return tmp; free(tmp);
return root;
} }
// Case 3: the root has 2 leaves, find the greatest key in the left subtree and switch with the root's
else { else {
node* tmp = getMax(root->left); node* tmp = getMax(root->left);
root->data = tmp->data; root->data = tmp->data;
@ -70,24 +90,33 @@ node* delete(node* root, int data){
return root; return root;
} }
// Search procedure, which looks for the input key in the tree and returns 1 if it's present or 0 if it's not in the tree
int find(node* root, int data){ int find(node* root, int data){
// If the root is null, the key's not present
if (root == NULL) if (root == NULL)
return 0; return 0;
// If the input key is greater than the root's, search in the right subtree
else if (data > root->data) else if (data > root->data)
return find(root->right, data); return find(root->right, data);
// If the input key is lower than the root's, search in the left subtree
else if (data < root->data) else if (data < root->data)
return find(root->left, data); return find(root->left, data);
// If the input and the root key match, return 1
else if (data == root->data) else if (data == root->data)
return 1; return 1;
} }
// Utilitary procedure to measure the height of the binary tree
int height(node* root){ int height(node* root){
// If the root is null, this is the bottom of the tree (height 0)
if (root == NULL) if (root == NULL)
return 0; return 0;
else{ else{
// Get the height from both left and right subtrees to check which is the greatest
int right_h = height(root->right); int right_h = height(root->right);
int left_h = height(root->left); int left_h = height(root->left);
// The final height is the height of the greatest subtree(left or right) plus 1(which is the root's level)
if (right_h > left_h) if (right_h > left_h)
return (right_h + 1); return (right_h + 1);
else else
@ -95,6 +124,7 @@ int height(node* root){
} }
} }
// Utilitary procedure to free all nodes in a tree
void purge(node* root){ void purge(node* root){
if (root != NULL){ if (root != NULL){
if (root->left != NULL) if (root->left != NULL)
@ -105,6 +135,7 @@ void purge(node* root){
} }
} }
// Traversal procedure to list the current keys in the tree in order of value (from the left to the right)
void inOrder(node* root){ void inOrder(node* root){
if(root != NULL){ if(root != NULL){
inOrder(root->left); inOrder(root->left);