From 0b426c012415965d25359c3a061d2db0cdf50659 Mon Sep 17 00:00:00 2001 From: Krishna Vedala <7001608+kvedala@users.noreply.github.com> Date: Sat, 8 Aug 2020 12:27:46 -0400 Subject: [PATCH] [doc fix] fix documentations in k_means (#592) * fix documentations * clang-tidy fixes for 814f9077b7a254e14d447871efb26f0fdb0a7671 Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> --- machine_learning/k_means_clustering.c | 451 +++++++++++++++----------- 1 file changed, 253 insertions(+), 198 deletions(-) diff --git a/machine_learning/k_means_clustering.c b/machine_learning/k_means_clustering.c index 11b85505..d762a7b4 100644 --- a/machine_learning/k_means_clustering.c +++ b/machine_learning/k_means_clustering.c @@ -35,10 +35,11 @@ * the name observation is used to denote * a random point in plane */ -typedef struct observation { - double x; /**< abscissa of 2D data point */ - double y; /**< ordinate of 2D data point */ - int group; /**< the group no in which this observation would go */ +typedef struct observation +{ + double x; /**< abscissa of 2D data point */ + double y; /**< ordinate of 2D data point */ + int group; /**< the group no in which this observation would go */ } observation; /*! @struct cluster @@ -48,13 +49,14 @@ typedef struct observation { * stores the count of observations * belonging to this cluster */ -typedef struct cluster { - double x; /**< abscissa centroid of this cluster */ - double y; /**< ordinate of centroid of this cluster */ - size_t count; /**< count of observations present in this cluster */ +typedef struct cluster +{ + double x; /**< abscissa centroid of this cluster */ + double y; /**< ordinate of centroid of this cluster */ + size_t count; /**< count of observations present in this cluster */ } cluster; -/*! @fn calculateNearest +/*! * Returns the index of centroid nearest to * given observation * @@ -64,24 +66,27 @@ typedef struct cluster { * * @returns the index of nearest centroid for given observation */ -int calculateNearst(observation* o, cluster clusters[], int k) { - double minD = DBL_MAX; - double dist = 0; - int index = -1; - int i = 0; - for (; i < k; i++) { - /* Calculate Squared Distance*/ - dist = (clusters[i].x - o->x) * (clusters[i].x - o->x) + - (clusters[i].y - o->y) * (clusters[i].y - o->y); - if (dist < minD) { - minD = dist; - index = i; +int calculateNearst(observation* o, cluster clusters[], int k) +{ + double minD = DBL_MAX; + double dist = 0; + int index = -1; + int i = 0; + for (; i < k; i++) + { + /* Calculate Squared Distance*/ + dist = (clusters[i].x - o->x) * (clusters[i].x - o->x) + + (clusters[i].y - o->y) * (clusters[i].y - o->y); + if (dist < minD) + { + minD = dist; + index = i; + } } - } - return index; + return index; } -/*! @fn calculateCentroid +/*! * Calculate centoid and assign it to the cluster variable * * @param observations an array of observations whose centroid is calculated @@ -90,22 +95,24 @@ int calculateNearst(observation* o, cluster clusters[], int k) { * centroid */ void calculateCentroid(observation observations[], size_t size, - cluster* centroid) { - size_t i = 0; - centroid->x = 0; - centroid->y = 0; - centroid->count = size; - for (; i < size; i++) { - centroid->x += observations[i].x; - centroid->y += observations[i].y; - observations[i].group = 0; - } - centroid->x /= centroid->count; - centroid->y /= centroid->count; + cluster* centroid) +{ + size_t i = 0; + centroid->x = 0; + centroid->y = 0; + centroid->count = size; + for (; i < size; i++) + { + centroid->x += observations[i].x; + centroid->y += observations[i].y; + observations[i].group = 0; + } + centroid->x /= centroid->count; + centroid->y /= centroid->count; } -/*! @fn kMeans - * --K Means Algorithm-- +/*! + * --K Means Algorithm-- * 1. Assign each observation to one of k groups * creating a random initial clustering * 2. Find the centroid of observations for each @@ -117,77 +124,93 @@ void calculateCentroid(observation observations[], size_t size, * 5. Repeat step 2,3,4 until there is no change * the current clustering and is same as last * clustering. + * * @param observations an array of observations to cluster * @param size size of observations array * @param k no of clusters to be made * * @returns pointer to cluster object */ -cluster* kMeans(observation observations[], size_t size, int k) { - cluster* clusters = NULL; - if (k <= 1) { - /* - If we have to cluster them only in one group - then calculate centroid of observations and - that will be a ingle cluster - */ - clusters = (cluster*)malloc(sizeof(cluster)); - memset(clusters, 0, sizeof(cluster)); - calculateCentroid(observations, size, clusters); - } else if (k < size) { - clusters = malloc(sizeof(cluster) * k); - memset(clusters, 0, k * sizeof(cluster)); - /* STEP 1 */ - for (size_t j = 0; j < size; j++) { - observations[j].group = rand() % k; +cluster* kMeans(observation observations[], size_t size, int k) +{ + cluster* clusters = NULL; + if (k <= 1) + { + /* + If we have to cluster them only in one group + then calculate centroid of observations and + that will be a ingle cluster + */ + clusters = (cluster*)malloc(sizeof(cluster)); + memset(clusters, 0, sizeof(cluster)); + calculateCentroid(observations, size, clusters); } - size_t changed = 0; - size_t minAcceptedError = - size / 10000; // Do until 99.99 percent points are in correct cluster - int t = 0; - do { - /* Initialize clusters */ - for (int i = 0; i < k; i++) { - clusters[i].x = 0; - clusters[i].y = 0; - clusters[i].count = 0; - } - /* STEP 2*/ - for (size_t j = 0; j < size; j++) { - t = observations[j].group; - clusters[t].x += observations[j].x; - clusters[t].y += observations[j].y; - clusters[t].count++; - } - for (int i = 0; i < k; i++) { - clusters[i].x /= clusters[i].count; - clusters[i].y /= clusters[i].count; - } - /* STEP 3 and 4 */ - changed = 0; // this variable stores change in clustering - for (size_t j = 0; j < size; j++) { - t = calculateNearst(observations + j, clusters, k); - if (t != observations[j].group) { - changed++; - observations[j].group = t; + else if (k < size) + { + clusters = malloc(sizeof(cluster) * k); + memset(clusters, 0, k * sizeof(cluster)); + /* STEP 1 */ + for (size_t j = 0; j < size; j++) + { + observations[j].group = rand() % k; } - } - } while (changed > minAcceptedError); // Keep on grouping until we have - // got almost best clustering - } else { - /* If no of clusters is more than observations - each observation can be its own cluster - */ - clusters = (cluster*)malloc(sizeof(cluster) * k); - memset(clusters, 0, k * sizeof(cluster)); - for (int j = 0; j < size; j++) { - clusters[j].x = observations[j].x; - clusters[j].y = observations[j].y; - clusters[j].count = 1; - observations[j].group = j; + size_t changed = 0; + size_t minAcceptedError = + size / + 10000; // Do until 99.99 percent points are in correct cluster + int t = 0; + do + { + /* Initialize clusters */ + for (int i = 0; i < k; i++) + { + clusters[i].x = 0; + clusters[i].y = 0; + clusters[i].count = 0; + } + /* STEP 2*/ + for (size_t j = 0; j < size; j++) + { + t = observations[j].group; + clusters[t].x += observations[j].x; + clusters[t].y += observations[j].y; + clusters[t].count++; + } + for (int i = 0; i < k; i++) + { + clusters[i].x /= clusters[i].count; + clusters[i].y /= clusters[i].count; + } + /* STEP 3 and 4 */ + changed = 0; // this variable stores change in clustering + for (size_t j = 0; j < size; j++) + { + t = calculateNearst(observations + j, clusters, k); + if (t != observations[j].group) + { + changed++; + observations[j].group = t; + } + } + } while (changed > minAcceptedError); // Keep on grouping until we have + // got almost best clustering } - } - return clusters; + else + { + /* If no of clusters is more than observations + each observation can be its own cluster + */ + clusters = (cluster*)malloc(sizeof(cluster) * k); + memset(clusters, 0, k * sizeof(cluster)); + for (int j = 0; j < size; j++) + { + clusters[j].x = observations[j].x; + clusters[j].y = observations[j].y; + clusters[j].count = 1; + observations[j].group = j; + } + } + return clusters; } /** @@ -195,73 +218,96 @@ cluster* kMeans(observation observations[], size_t size, int k) { * @} */ -/*! @fn printEPS +/*! * A function to print observations and clusters * The code is taken from - * @link http://rosettacode.org/wiki/K-means%2B%2B_clustering - * its C implementation + * http://rosettacode.org/wiki/K-means%2B%2B_clustering. * Even the K Means code is also inspired from it * - * Note: To print in a file use pipeline operator ( ./a.out > image.eps ) + * @note To print in a file use pipeline operator + * ```sh + * ./k_means_clustering > image.eps + * ``` * * @param observations observations array * @param len size of observation array * @param cent clusters centroid's array * @param k size of cent array */ -void printEPS(observation pts[], size_t len, cluster cent[], int k) { - int W = 400, H = 400; - double min_x = DBL_MAX, max_x = DBL_MIN, min_y = DBL_MAX, max_y = DBL_MIN; - double scale = 0, cx = 0, cy = 0; - double* colors = (double*)malloc(sizeof(double) * (k * 3)); - int i; - size_t j; - double kd = k * 1.0; - for (i = 0; i < k; i++) { - *(colors + 3 * i) = (3 * (i + 1) % k) / kd; - *(colors + 3 * i + 1) = (7 * i % k) / kd; - *(colors + 3 * i + 2) = (9 * i % k) / kd; - } - - for (j = 0; j < len; j++) { - if (max_x < pts[j].x) max_x = pts[j].x; - if (min_x > pts[j].x) min_x = pts[j].x; - if (max_y < pts[j].y) max_y = pts[j].y; - if (min_y > pts[j].y) min_y = pts[j].y; - } - scale = W / (max_x - min_x); - if (scale > (H / (max_y - min_y))) { - scale = H / (max_y - min_y); - }; - cx = (max_x + min_x) / 2; - cy = (max_y + min_y) / 2; - - printf("%%!PS-Adobe-3.0 EPSF-3.0\n%%%%BoundingBox: -5 -5 %d %d\n", W + 10, - H + 10); - printf( - "/l {rlineto} def /m {rmoveto} def\n" - "/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" - "/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " - " gsave 1 setgray fill grestore gsave 3 setlinewidth" - " 1 setgray stroke grestore 0 setgray stroke }def\n"); - for (int i = 0; i < k; i++) { - printf("%g %g %g setrgbcolor\n", *(colors + 3 * i), *(colors + 3 * i + 1), - *(colors + 3 * i + 2)); - for (j = 0; j < len; j++) { - if (pts[j].group != i) continue; - printf("%.3f %.3f c\n", (pts[j].x - cx) * scale + W / 2, - (pts[j].y - cy) * scale + H / 2); +void printEPS(observation pts[], size_t len, cluster cent[], int k) +{ + int W = 400, H = 400; + double min_x = DBL_MAX, max_x = DBL_MIN, min_y = DBL_MAX, max_y = DBL_MIN; + double scale = 0, cx = 0, cy = 0; + double* colors = (double*)malloc(sizeof(double) * (k * 3)); + int i; + size_t j; + double kd = k * 1.0; + for (i = 0; i < k; i++) + { + *(colors + 3 * i) = (3 * (i + 1) % k) / kd; + *(colors + 3 * i + 1) = (7 * i % k) / kd; + *(colors + 3 * i + 2) = (9 * i % k) / kd; } - printf("\n0 setgray %g %g s\n", (cent[i].x - cx) * scale + W / 2, - (cent[i].y - cy) * scale + H / 2); - } - printf("\n%%%%EOF"); - // free accquired memory - free(colors); + for (j = 0; j < len; j++) + { + if (max_x < pts[j].x) + { + max_x = pts[j].x; + } + if (min_x > pts[j].x) + { + min_x = pts[j].x; + } + if (max_y < pts[j].y) + { + max_y = pts[j].y; + } + if (min_y > pts[j].y) + { + min_y = pts[j].y; + } + } + scale = W / (max_x - min_x); + if (scale > (H / (max_y - min_y))) + { + scale = H / (max_y - min_y); + }; + cx = (max_x + min_x) / 2; + cy = (max_y + min_y) / 2; + + printf("%%!PS-Adobe-3.0 EPSF-3.0\n%%%%BoundingBox: -5 -5 %d %d\n", W + 10, + H + 10); + printf( + "/l {rlineto} def /m {rmoveto} def\n" + "/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" + "/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " + " gsave 1 setgray fill grestore gsave 3 setlinewidth" + " 1 setgray stroke grestore 0 setgray stroke }def\n"); + for (int i = 0; i < k; i++) + { + printf("%g %g %g setrgbcolor\n", *(colors + 3 * i), + *(colors + 3 * i + 1), *(colors + 3 * i + 2)); + for (j = 0; j < len; j++) + { + if (pts[j].group != i) + { + continue; + } + printf("%.3f %.3f c\n", (pts[j].x - cx) * scale + W / 2, + (pts[j].y - cy) * scale + H / 2); + } + printf("\n0 setgray %g %g s\n", (cent[i].x - cx) * scale + W / 2, + (cent[i].y - cy) * scale + H / 2); + } + printf("\n%%%%EOF"); + + // free accquired memory + free(colors); } -/*! @fn test +/*! * A function to test the kMeans function * Generates 100000 points in a circle of * radius 20.0 with center at (0,0) @@ -270,29 +316,33 @@ void printEPS(observation pts[], size_t len, cluster cent[], int k) { * Output for 100000 points divided in 5 clusters + * @returns None */ -static void test() { - size_t size = 100000L; - observation* observations = (observation*)malloc(sizeof(observation) * size); - double maxRadius = 20.00; - double radius = 0; - double ang = 0; - size_t i = 0; - for (; i < size; i++) { - radius = maxRadius * ((double)rand() / RAND_MAX); - ang = 2 * M_PI * ((double)rand() / RAND_MAX); - observations[i].x = radius * cos(ang); - observations[i].y = radius * sin(ang); - } - int k = 5; // No of clusters - cluster* clusters = kMeans(observations, size, k); - printEPS(observations, size, clusters, k); - // Free the accquired memory - free(observations); - free(clusters); +static void test() +{ + size_t size = 100000L; + observation* observations = + (observation*)malloc(sizeof(observation) * size); + double maxRadius = 20.00; + double radius = 0; + double ang = 0; + size_t i = 0; + for (; i < size; i++) + { + radius = maxRadius * ((double)rand() / RAND_MAX); + ang = 2 * M_PI * ((double)rand() / RAND_MAX); + observations[i].x = radius * cos(ang); + observations[i].y = radius * sin(ang); + } + int k = 5; // No of clusters + cluster* clusters = kMeans(observations, size, k); + printEPS(observations, size, clusters, k); + // Free the accquired memory + free(observations); + free(clusters); } -/*! @fn test2 +/*! * A function to test the kMeans function * Generates 1000000 points in a circle of * radius 20.0 with center at (0,0) @@ -301,35 +351,40 @@ static void test() { * Output for 1000000 points divided in 11 clusters + * @returns None */ -void test2() { - size_t size = 1000000L; - observation* observations = (observation*)malloc(sizeof(observation) * size); - double maxRadius = 20.00; - double radius = 0; - double ang = 0; - size_t i = 0; - for (; i < size; i++) { - radius = maxRadius * ((double)rand() / RAND_MAX); - ang = 2 * M_PI * ((double)rand() / RAND_MAX); - observations[i].x = radius * cos(ang); - observations[i].y = radius * sin(ang); - } - int k = 11; // No of clusters - cluster* clusters = kMeans(observations, size, k); - printEPS(observations, size, clusters, k); - // Free the accquired memory - free(observations); - free(clusters); +void test2() +{ + size_t size = 1000000L; + observation* observations = + (observation*)malloc(sizeof(observation) * size); + double maxRadius = 20.00; + double radius = 0; + double ang = 0; + size_t i = 0; + for (; i < size; i++) + { + radius = maxRadius * ((double)rand() / RAND_MAX); + ang = 2 * M_PI * ((double)rand() / RAND_MAX); + observations[i].x = radius * cos(ang); + observations[i].y = radius * sin(ang); + } + int k = 11; // No of clusters + cluster* clusters = kMeans(observations, size, k); + printEPS(observations, size, clusters, k); + // Free the accquired memory + free(observations); + free(clusters); } -/*! @fn main +/*! * This function calls the test * function */ -int main() { - srand(time(NULL)); - test(); - /* test2(); */ - return 0; +int main() +{ + srand(time(NULL)); + test(); + /* test2(); */ + return 0; }