[doc fix] fix documentations in k_means (#592)

* fix documentations

* clang-tidy fixes for 814f9077b7

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Krishna Vedala 2020-08-08 12:27:46 -04:00 committed by GitHub
parent 05d9af45f3
commit 0b426c0124
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -35,10 +35,11 @@
* the name observation is used to denote * the name observation is used to denote
* a random point in plane * a random point in plane
*/ */
typedef struct observation { typedef struct observation
double x; /**< abscissa of 2D data point */ {
double y; /**< ordinate of 2D data point */ double x; /**< abscissa of 2D data point */
int group; /**< the group no in which this observation would go */ double y; /**< ordinate of 2D data point */
int group; /**< the group no in which this observation would go */
} observation; } observation;
/*! @struct cluster /*! @struct cluster
@ -48,13 +49,14 @@ typedef struct observation {
* stores the count of observations * stores the count of observations
* belonging to this cluster * belonging to this cluster
*/ */
typedef struct cluster { typedef struct cluster
double x; /**< abscissa centroid of this cluster */ {
double y; /**< ordinate of centroid of this cluster */ double x; /**< abscissa centroid of this cluster */
size_t count; /**< count of observations present in this cluster */ double y; /**< ordinate of centroid of this cluster */
size_t count; /**< count of observations present in this cluster */
} cluster; } cluster;
/*! @fn calculateNearest /*!
* Returns the index of centroid nearest to * Returns the index of centroid nearest to
* given observation * given observation
* *
@ -64,24 +66,27 @@ typedef struct cluster {
* *
* @returns the index of nearest centroid for given observation * @returns the index of nearest centroid for given observation
*/ */
int calculateNearst(observation* o, cluster clusters[], int k) { int calculateNearst(observation* o, cluster clusters[], int k)
double minD = DBL_MAX; {
double dist = 0; double minD = DBL_MAX;
int index = -1; double dist = 0;
int i = 0; int index = -1;
for (; i < k; i++) { int i = 0;
/* Calculate Squared Distance*/ for (; i < k; i++)
dist = (clusters[i].x - o->x) * (clusters[i].x - o->x) + {
(clusters[i].y - o->y) * (clusters[i].y - o->y); /* Calculate Squared Distance*/
if (dist < minD) { dist = (clusters[i].x - o->x) * (clusters[i].x - o->x) +
minD = dist; (clusters[i].y - o->y) * (clusters[i].y - o->y);
index = i; if (dist < minD)
{
minD = dist;
index = i;
}
} }
} return index;
return index;
} }
/*! @fn calculateCentroid /*!
* Calculate centoid and assign it to the cluster variable * Calculate centoid and assign it to the cluster variable
* *
* @param observations an array of observations whose centroid is calculated * @param observations an array of observations whose centroid is calculated
@ -90,22 +95,24 @@ int calculateNearst(observation* o, cluster clusters[], int k) {
* centroid * centroid
*/ */
void calculateCentroid(observation observations[], size_t size, void calculateCentroid(observation observations[], size_t size,
cluster* centroid) { cluster* centroid)
size_t i = 0; {
centroid->x = 0; size_t i = 0;
centroid->y = 0; centroid->x = 0;
centroid->count = size; centroid->y = 0;
for (; i < size; i++) { centroid->count = size;
centroid->x += observations[i].x; for (; i < size; i++)
centroid->y += observations[i].y; {
observations[i].group = 0; centroid->x += observations[i].x;
} centroid->y += observations[i].y;
centroid->x /= centroid->count; observations[i].group = 0;
centroid->y /= centroid->count; }
centroid->x /= centroid->count;
centroid->y /= centroid->count;
} }
/*! @fn kMeans /*!
* --K Means Algorithm-- * --K Means Algorithm--
* 1. Assign each observation to one of k groups * 1. Assign each observation to one of k groups
* creating a random initial clustering * creating a random initial clustering
* 2. Find the centroid of observations for each * 2. Find the centroid of observations for each
@ -117,77 +124,93 @@ void calculateCentroid(observation observations[], size_t size,
* 5. Repeat step 2,3,4 until there is no change * 5. Repeat step 2,3,4 until there is no change
* the current clustering and is same as last * the current clustering and is same as last
* clustering. * clustering.
*
* @param observations an array of observations to cluster * @param observations an array of observations to cluster
* @param size size of observations array * @param size size of observations array
* @param k no of clusters to be made * @param k no of clusters to be made
* *
* @returns pointer to cluster object * @returns pointer to cluster object
*/ */
cluster* kMeans(observation observations[], size_t size, int k) { cluster* kMeans(observation observations[], size_t size, int k)
cluster* clusters = NULL; {
if (k <= 1) { cluster* clusters = NULL;
/* if (k <= 1)
If we have to cluster them only in one group {
then calculate centroid of observations and /*
that will be a ingle cluster If we have to cluster them only in one group
*/ then calculate centroid of observations and
clusters = (cluster*)malloc(sizeof(cluster)); that will be a ingle cluster
memset(clusters, 0, sizeof(cluster)); */
calculateCentroid(observations, size, clusters); clusters = (cluster*)malloc(sizeof(cluster));
} else if (k < size) { memset(clusters, 0, sizeof(cluster));
clusters = malloc(sizeof(cluster) * k); calculateCentroid(observations, size, clusters);
memset(clusters, 0, k * sizeof(cluster));
/* STEP 1 */
for (size_t j = 0; j < size; j++) {
observations[j].group = rand() % k;
} }
size_t changed = 0; else if (k < size)
size_t minAcceptedError = {
size / 10000; // Do until 99.99 percent points are in correct cluster clusters = malloc(sizeof(cluster) * k);
int t = 0; memset(clusters, 0, k * sizeof(cluster));
do { /* STEP 1 */
/* Initialize clusters */ for (size_t j = 0; j < size; j++)
for (int i = 0; i < k; i++) { {
clusters[i].x = 0; observations[j].group = rand() % k;
clusters[i].y = 0;
clusters[i].count = 0;
}
/* STEP 2*/
for (size_t j = 0; j < size; j++) {
t = observations[j].group;
clusters[t].x += observations[j].x;
clusters[t].y += observations[j].y;
clusters[t].count++;
}
for (int i = 0; i < k; i++) {
clusters[i].x /= clusters[i].count;
clusters[i].y /= clusters[i].count;
}
/* STEP 3 and 4 */
changed = 0; // this variable stores change in clustering
for (size_t j = 0; j < size; j++) {
t = calculateNearst(observations + j, clusters, k);
if (t != observations[j].group) {
changed++;
observations[j].group = t;
} }
} size_t changed = 0;
} while (changed > minAcceptedError); // Keep on grouping until we have size_t minAcceptedError =
// got almost best clustering size /
} else { 10000; // Do until 99.99 percent points are in correct cluster
/* If no of clusters is more than observations int t = 0;
each observation can be its own cluster do
*/ {
clusters = (cluster*)malloc(sizeof(cluster) * k); /* Initialize clusters */
memset(clusters, 0, k * sizeof(cluster)); for (int i = 0; i < k; i++)
for (int j = 0; j < size; j++) { {
clusters[j].x = observations[j].x; clusters[i].x = 0;
clusters[j].y = observations[j].y; clusters[i].y = 0;
clusters[j].count = 1; clusters[i].count = 0;
observations[j].group = j; }
/* STEP 2*/
for (size_t j = 0; j < size; j++)
{
t = observations[j].group;
clusters[t].x += observations[j].x;
clusters[t].y += observations[j].y;
clusters[t].count++;
}
for (int i = 0; i < k; i++)
{
clusters[i].x /= clusters[i].count;
clusters[i].y /= clusters[i].count;
}
/* STEP 3 and 4 */
changed = 0; // this variable stores change in clustering
for (size_t j = 0; j < size; j++)
{
t = calculateNearst(observations + j, clusters, k);
if (t != observations[j].group)
{
changed++;
observations[j].group = t;
}
}
} while (changed > minAcceptedError); // Keep on grouping until we have
// got almost best clustering
} }
} else
return clusters; {
/* If no of clusters is more than observations
each observation can be its own cluster
*/
clusters = (cluster*)malloc(sizeof(cluster) * k);
memset(clusters, 0, k * sizeof(cluster));
for (int j = 0; j < size; j++)
{
clusters[j].x = observations[j].x;
clusters[j].y = observations[j].y;
clusters[j].count = 1;
observations[j].group = j;
}
}
return clusters;
} }
/** /**
@ -195,73 +218,96 @@ cluster* kMeans(observation observations[], size_t size, int k) {
* @} * @}
*/ */
/*! @fn printEPS /*!
* A function to print observations and clusters * A function to print observations and clusters
* The code is taken from * The code is taken from
* @link http://rosettacode.org/wiki/K-means%2B%2B_clustering * http://rosettacode.org/wiki/K-means%2B%2B_clustering.
* its C implementation
* Even the K Means code is also inspired from it * Even the K Means code is also inspired from it
* *
* Note: To print in a file use pipeline operator ( ./a.out > image.eps ) * @note To print in a file use pipeline operator
* ```sh
* ./k_means_clustering > image.eps
* ```
* *
* @param observations observations array * @param observations observations array
* @param len size of observation array * @param len size of observation array
* @param cent clusters centroid's array * @param cent clusters centroid's array
* @param k size of cent array * @param k size of cent array
*/ */
void printEPS(observation pts[], size_t len, cluster cent[], int k) { void printEPS(observation pts[], size_t len, cluster cent[], int k)
int W = 400, H = 400; {
double min_x = DBL_MAX, max_x = DBL_MIN, min_y = DBL_MAX, max_y = DBL_MIN; int W = 400, H = 400;
double scale = 0, cx = 0, cy = 0; double min_x = DBL_MAX, max_x = DBL_MIN, min_y = DBL_MAX, max_y = DBL_MIN;
double* colors = (double*)malloc(sizeof(double) * (k * 3)); double scale = 0, cx = 0, cy = 0;
int i; double* colors = (double*)malloc(sizeof(double) * (k * 3));
size_t j; int i;
double kd = k * 1.0; size_t j;
for (i = 0; i < k; i++) { double kd = k * 1.0;
*(colors + 3 * i) = (3 * (i + 1) % k) / kd; for (i = 0; i < k; i++)
*(colors + 3 * i + 1) = (7 * i % k) / kd; {
*(colors + 3 * i + 2) = (9 * i % k) / kd; *(colors + 3 * i) = (3 * (i + 1) % k) / kd;
} *(colors + 3 * i + 1) = (7 * i % k) / kd;
*(colors + 3 * i + 2) = (9 * i % k) / kd;
for (j = 0; j < len; j++) {
if (max_x < pts[j].x) max_x = pts[j].x;
if (min_x > pts[j].x) min_x = pts[j].x;
if (max_y < pts[j].y) max_y = pts[j].y;
if (min_y > pts[j].y) min_y = pts[j].y;
}
scale = W / (max_x - min_x);
if (scale > (H / (max_y - min_y))) {
scale = H / (max_y - min_y);
};
cx = (max_x + min_x) / 2;
cy = (max_y + min_y) / 2;
printf("%%!PS-Adobe-3.0 EPSF-3.0\n%%%%BoundingBox: -5 -5 %d %d\n", W + 10,
H + 10);
printf(
"/l {rlineto} def /m {rmoveto} def\n"
"/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n"
"/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath "
" gsave 1 setgray fill grestore gsave 3 setlinewidth"
" 1 setgray stroke grestore 0 setgray stroke }def\n");
for (int i = 0; i < k; i++) {
printf("%g %g %g setrgbcolor\n", *(colors + 3 * i), *(colors + 3 * i + 1),
*(colors + 3 * i + 2));
for (j = 0; j < len; j++) {
if (pts[j].group != i) continue;
printf("%.3f %.3f c\n", (pts[j].x - cx) * scale + W / 2,
(pts[j].y - cy) * scale + H / 2);
} }
printf("\n0 setgray %g %g s\n", (cent[i].x - cx) * scale + W / 2,
(cent[i].y - cy) * scale + H / 2);
}
printf("\n%%%%EOF");
// free accquired memory for (j = 0; j < len; j++)
free(colors); {
if (max_x < pts[j].x)
{
max_x = pts[j].x;
}
if (min_x > pts[j].x)
{
min_x = pts[j].x;
}
if (max_y < pts[j].y)
{
max_y = pts[j].y;
}
if (min_y > pts[j].y)
{
min_y = pts[j].y;
}
}
scale = W / (max_x - min_x);
if (scale > (H / (max_y - min_y)))
{
scale = H / (max_y - min_y);
};
cx = (max_x + min_x) / 2;
cy = (max_y + min_y) / 2;
printf("%%!PS-Adobe-3.0 EPSF-3.0\n%%%%BoundingBox: -5 -5 %d %d\n", W + 10,
H + 10);
printf(
"/l {rlineto} def /m {rmoveto} def\n"
"/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n"
"/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath "
" gsave 1 setgray fill grestore gsave 3 setlinewidth"
" 1 setgray stroke grestore 0 setgray stroke }def\n");
for (int i = 0; i < k; i++)
{
printf("%g %g %g setrgbcolor\n", *(colors + 3 * i),
*(colors + 3 * i + 1), *(colors + 3 * i + 2));
for (j = 0; j < len; j++)
{
if (pts[j].group != i)
{
continue;
}
printf("%.3f %.3f c\n", (pts[j].x - cx) * scale + W / 2,
(pts[j].y - cy) * scale + H / 2);
}
printf("\n0 setgray %g %g s\n", (cent[i].x - cx) * scale + W / 2,
(cent[i].y - cy) * scale + H / 2);
}
printf("\n%%%%EOF");
// free accquired memory
free(colors);
} }
/*! @fn test /*!
* A function to test the kMeans function * A function to test the kMeans function
* Generates 100000 points in a circle of * Generates 100000 points in a circle of
* radius 20.0 with center at (0,0) * radius 20.0 with center at (0,0)
@ -270,29 +316,33 @@ void printEPS(observation pts[], size_t len, cluster cent[], int k) {
* <img alt="Output for 100000 points divided in 5 clusters" src= * <img alt="Output for 100000 points divided in 5 clusters" src=
* "https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/k_means_clustering/kMeansTest1.png" * "https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/k_means_clustering/kMeansTest1.png"
* width="400px" heiggt="400px"> * width="400px" heiggt="400px">
* @returns None
*/ */
static void test() { static void test()
size_t size = 100000L; {
observation* observations = (observation*)malloc(sizeof(observation) * size); size_t size = 100000L;
double maxRadius = 20.00; observation* observations =
double radius = 0; (observation*)malloc(sizeof(observation) * size);
double ang = 0; double maxRadius = 20.00;
size_t i = 0; double radius = 0;
for (; i < size; i++) { double ang = 0;
radius = maxRadius * ((double)rand() / RAND_MAX); size_t i = 0;
ang = 2 * M_PI * ((double)rand() / RAND_MAX); for (; i < size; i++)
observations[i].x = radius * cos(ang); {
observations[i].y = radius * sin(ang); radius = maxRadius * ((double)rand() / RAND_MAX);
} ang = 2 * M_PI * ((double)rand() / RAND_MAX);
int k = 5; // No of clusters observations[i].x = radius * cos(ang);
cluster* clusters = kMeans(observations, size, k); observations[i].y = radius * sin(ang);
printEPS(observations, size, clusters, k); }
// Free the accquired memory int k = 5; // No of clusters
free(observations); cluster* clusters = kMeans(observations, size, k);
free(clusters); printEPS(observations, size, clusters, k);
// Free the accquired memory
free(observations);
free(clusters);
} }
/*! @fn test2 /*!
* A function to test the kMeans function * A function to test the kMeans function
* Generates 1000000 points in a circle of * Generates 1000000 points in a circle of
* radius 20.0 with center at (0,0) * radius 20.0 with center at (0,0)
@ -301,35 +351,40 @@ static void test() {
* <img alt="Output for 1000000 points divided in 11 clusters" src= * <img alt="Output for 1000000 points divided in 11 clusters" src=
* "https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/k_means_clustering/kMeansTest2.png" * "https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/k_means_clustering/kMeansTest2.png"
* width="400px" heiggt="400px"> * width="400px" heiggt="400px">
* @returns None
*/ */
void test2() { void test2()
size_t size = 1000000L; {
observation* observations = (observation*)malloc(sizeof(observation) * size); size_t size = 1000000L;
double maxRadius = 20.00; observation* observations =
double radius = 0; (observation*)malloc(sizeof(observation) * size);
double ang = 0; double maxRadius = 20.00;
size_t i = 0; double radius = 0;
for (; i < size; i++) { double ang = 0;
radius = maxRadius * ((double)rand() / RAND_MAX); size_t i = 0;
ang = 2 * M_PI * ((double)rand() / RAND_MAX); for (; i < size; i++)
observations[i].x = radius * cos(ang); {
observations[i].y = radius * sin(ang); radius = maxRadius * ((double)rand() / RAND_MAX);
} ang = 2 * M_PI * ((double)rand() / RAND_MAX);
int k = 11; // No of clusters observations[i].x = radius * cos(ang);
cluster* clusters = kMeans(observations, size, k); observations[i].y = radius * sin(ang);
printEPS(observations, size, clusters, k); }
// Free the accquired memory int k = 11; // No of clusters
free(observations); cluster* clusters = kMeans(observations, size, k);
free(clusters); printEPS(observations, size, clusters, k);
// Free the accquired memory
free(observations);
free(clusters);
} }
/*! @fn main /*!
* This function calls the test * This function calls the test
* function * function
*/ */
int main() { int main()
srand(time(NULL)); {
test(); srand(time(NULL));
/* test2(); */ test();
return 0; /* test2(); */
return 0;
} }