From b75a201fdbbe2c3ee2d2a9fded2aca028d6dbc71 Mon Sep 17 00:00:00 2001 From: Krishna Vedala <7001608+kvedala@users.noreply.github.com> Date: Sun, 16 Aug 2020 21:46:45 -0400 Subject: [PATCH] added quaternions operations --- geometry/quaternions.c | 173 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 173 insertions(+) create mode 100644 geometry/quaternions.c diff --git a/geometry/quaternions.c b/geometry/quaternions.c new file mode 100644 index 00000000..cdddbde8 --- /dev/null +++ b/geometry/quaternions.c @@ -0,0 +1,173 @@ +/** + * @file + * @brief API Functions related to 3D vector operations. + * @author Krishna Vedala + */ + +#include +#ifdef __arm__ // if compiling for ARM-Cortex processors +#define LIBQUAT_ARM +#include +#else +#include +#endif +#include + +#include "geometry_datatypes.h" + +/** + * @addtogroup quats 3D Quaternion operations + * @{ + */ + +/** + * Function to convert given Euler angles to a quaternion. + * \f{eqnarray*}{ + * q_{0} & = + * &\cos\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right) + * + + * \sin\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right)\\ + * q_{1} & = + * &\sin\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right) + * - + * \cos\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right)\\ + * q_{2} & = + * &\cos\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right) + * + + * \sin\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right)\\ + * q_{3} & = + * &\cos\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right) + * - + * \sin\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right)\\ + * \f} + * + * @param [in] in_euler input Euler angles instance + * @returns converted quaternion + */ +quaternion quat_from_euler(const euler *in_euler) +{ + quaternion out_quat; + + if (!in_euler) // if null + { + fprintf(stderr, "%s: Invalid input.", __func__); + return out_quat; + } + + quaternion temp; + + float cy = cosf(in_euler->yaw * 0.5f); + float sy = sinf(in_euler->yaw * 0.5f); + float cp = cosf(in_euler->pitch * 0.5f); + float sp = sinf(in_euler->pitch * 0.5f); + float cr = cosf(in_euler->roll * 0.5f); + float sr = sinf(in_euler->roll * 0.5f); + + temp.w = cr * cp * cy + sr * sp * sy; + temp.q1 = sr * cp * cy - cr * sp * sy; + temp.q2 = cr * sp * cy + sr * cp * sy; + temp.q3 = cr * cp * sy - sr * sp * cy; + + return temp; +} + +/** + * Function to convert given quaternion to Euler angles. + * \f{eqnarray*}{ + * \phi & = & + * \tan^{-1}\left[\frac{2\left(q_0q_1+q_2q_3\right)}{1-2\left(q_1^2+q_2^2\right)}\right]\\ + * \theta & = + * &-\sin^{-1}\left[2\left(q_0q_2-q_3q_1\right)\right]\\ + * \psi & = & + * \tan^{-1}\left[\frac{2\left(q_0q_3+q_1q_2\right)}{1-2\left(q_2^2+q_3^2\right)}\right]\\ + * \f} + * + * @param [in] in_quat input quaternion instance + * @returns converted euler angles + */ +euler euler_from_quat(const quaternion *in_quat) +{ + euler out_euler; + if (!in_quat) // if null + { + fprintf(stderr, "%s: Invalid input.", __func__); + return out_euler; + } + + out_euler.roll = atan2f( + 2.f * (in_quat->w * in_quat->q1 + in_quat->q2 * in_quat->q3), + 1.f - 2.f * (in_quat->q1 * in_quat->q1 + in_quat->q2 * in_quat->q2)); + out_euler.pitch = + asinf(2.f * (in_quat->w * in_quat->q2 + in_quat->q1 * in_quat->q3)); + out_euler.yaw = atan2f( + 2.f * (in_quat->w * in_quat->q3 + in_quat->q1 * in_quat->q2), + 1.f - 2.f * (in_quat->q2 * in_quat->q2 + in_quat->q3 * in_quat->q3)); + + return out_euler; +} + +/** + * Function to multiply two quaternions. + * \f{eqnarray*}{ + * \mathbf{c} & = & \mathbf{a}\otimes\mathbf{b}\\ + * & = & \begin{bmatrix}a_{0} & a_{1} & a_{2} & + * a_{3}\end{bmatrix}\otimes\begin{bmatrix}b_{0} & b_{1} & b_{2} & + * b_{3}\end{bmatrix}\\ + * & = & + * \begin{bmatrix} + * a_{0}b_{0}-a_{1}b_{1}-a_{2}b_{2}-a_{3}b_{3}\\ + * a_{0}b_{1}+a_{1}b_{0}+a_{2}b_{3}-a_{3}b_{2}\\ + * a_{0}b_{2}-a_{1}b_{3}+a_{2}b_{0}+a_{3}b_{1}\\ + * a_{0}b_{3}+a_{1}b_{2}-a_{2}b_{1}+a_{3}b_{0} + * \end{bmatrix}^{T} + * \f} + * + * @param [in] in_quat1 first input quaternion instance + * @param [in] in_quat2 second input quaternion instance + * @returns resultant quaternion + */ +quaternion quaternion_multiply(const quaternion *in_quat1, + const quaternion *in_quat2) +{ + quaternion out_quat; + if (!in_quat1 || !in_quat2) // if null + { + fprintf(stderr, "%s: Invalid input.", __func__); + return out_quat; + } + + out_quat.w = in_quat1->w * in_quat2->w - in_quat1->q1 * in_quat2->q1 - + in_quat1->q2 * in_quat2->q2 - in_quat1->q3 * in_quat2->q3; + out_quat.q1 = in_quat1->w * in_quat2->q1 + in_quat1->q1 * in_quat2->w + + in_quat1->q2 * in_quat2->q3 - in_quat1->q3 * in_quat2->q2; + out_quat.q2 = in_quat1->w * in_quat2->q2 - in_quat1->q1 * in_quat2->q3 + + in_quat1->q2 * in_quat2->w + in_quat1->q3 * in_quat2->q1; + out_quat.q3 = in_quat1->w * in_quat2->q3 + in_quat1->q1 * in_quat2->q2 - + in_quat1->q2 * in_quat2->q1 + in_quat1->q3 * in_quat2->w; + + return out_quat; +} + +/** @} */ + +static void test() +{ + quaternion quat = {0.7071f, 0.7071f, 0.f, 0.f}; + euler eul = euler_from_quat(&quat); + printf("Euler: %.4g, %.4g, %.4g\n", eul.pitch, eul.roll, eul.yaw); + + quaternion test_quat = quat_from_euler(&eul); + printf("Quaternion: %.4g %+.4g %+.4g %+.4g\n", test_quat.w, + test_quat.dual.x, test_quat.dual.y, test_quat.dual.z); + + assert(fabs(test_quat.w - quat.w) < .01); + assert(fabs(test_quat.q1 - quat.q1) < .01); + assert(fabs(test_quat.q2 - quat.q2) < .01); + assert(fabs(test_quat.q3 - quat.q3) < .01); +} + +int main() +{ + test(); + return 0; +}