From b833e27964f0d6c782b81b763058afacb66ac694 Mon Sep 17 00:00:00 2001 From: Krishna Vedala <7001608+kvedala@users.noreply.github.com> Date: Sun, 28 Jun 2020 11:22:42 -0400 Subject: [PATCH] fix link references from fork to main repo --- README.md | 16 +- machine_learning/kohonen_som_topology.c | 183 ++++++++++---------- machine_learning/kohonen_som_trace.c | 132 +++++++------- numerical_methods/durand_kerner_roots.c | 18 +- numerical_methods/ode_forward_euler.c | 23 ++- numerical_methods/ode_midpoint_euler.c | 26 ++- numerical_methods/ode_semi_implicit_euler.c | 30 ++-- 7 files changed, 212 insertions(+), 216 deletions(-) diff --git a/README.md b/README.md index afd302cd..2ab5cc54 100644 --- a/README.md +++ b/README.md @@ -1,15 +1,15 @@ # The Algorithms - C # {#mainpage} -[![Gitpod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/kvedala/C) +[![Gitpod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/TheAlgorithms/C) [![Gitter chat](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square)](https://gitter.im/TheAlgorithms) -[![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/kvedala/C-Plus-Plus/blob/master/CONTRIBUTING.md)  -![GitHub repo size](https://img.shields.io/github/repo-size/kvedala/C-Plus-Plus?color=red&style=flat-square) -![GitHub closed pull requests](https://img.shields.io/github/issues-pr-closed/kvedala/C?color=green&style=flat-square) -![Doxygen CI](https://github.com/kvedala/C/workflows/Doxygen%20CI/badge.svg) -![Awesome CI Workflow](https://github.com/kvedala/C/workflows/Awesome%20CI%20Workflow/badge.svg) +[![contributions welcome](https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square)](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/CONTRIBUTING.md)  +![GitHub repo size](https://img.shields.io/github/repo-size/TheAlgorithms/C-Plus-Plus?color=red&style=flat-square) +![GitHub closed pull requests](https://img.shields.io/github/issues-pr-closed/TheAlgorithms/C?color=green&style=flat-square) +![Doxygen CI](https://github.com/TheAlgorithms/C/workflows/Doxygen%20CI/badge.svg) +![Awesome CI Workflow](https://github.com/TheAlgorithms/C/workflows/Awesome%20CI%20Workflow/badge.svg) -[Online Documentation](https://kvedala.github.io/C). +[Online Documentation](https://TheAlgorithms.github.io/C). -Click on [Files menu](https://kvedala.github.io/C/files.html) to see the list of all the files documented with the code. +Click on [Files menu](https://TheAlgorithms.github.io/C/files.html) to see the list of all the files documented with the code. All the code can be executed and tested online: [![using Google Colab Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/kvedala/27f1b0b6502af935f6917673ec43bcd7/plot-durand_kerner-log.ipynb) diff --git a/machine_learning/kohonen_som_topology.c b/machine_learning/kohonen_som_topology.c index a024ae04..3820d713 100644 --- a/machine_learning/kohonen_som_topology.c +++ b/machine_learning/kohonen_som_topology.c @@ -11,7 +11,7 @@ * data points in a much higher dimesional space by creating an equivalent in a * 2-dimensional space. * Trained topological maps for the test cases in the program * \warning MSVC 2019 compiler generates code that does not execute as expected. * However, MinGW, Clang for GCC and Clang for MSVC compilers on windows perform @@ -23,18 +23,18 @@ #include #include #include -#ifdef _OPENMP // check if OpenMP based parallellization is available +#ifdef _OPENMP // check if OpenMP based parallellization is available #include #endif #ifndef max -#define max(a, b) \ - (((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \ +#define max(a, b) \ + (((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \ */ #endif #ifndef min -#define min(a, b) \ - (((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \ +#define min(a, b) \ + (((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \ */ #endif @@ -98,7 +98,7 @@ int save_2d_data(const char *fname, double **X, int num_points, int num_features) { FILE *fp = fopen(fname, "wt"); - if (!fp) // error with fopen + if (!fp) // error with fopen { char msg[120]; sprintf(msg, "File error (%s): ", fname); @@ -106,16 +106,16 @@ int save_2d_data(const char *fname, double **X, int num_points, return -1; } - for (int i = 0; i < num_points; i++) // for each point in the array + for (int i = 0; i < num_points; i++) // for each point in the array { - for (int j = 0; j < num_features; j++) // for each feature in the array + for (int j = 0; j < num_features; j++) // for each feature in the array { - fprintf(fp, "%.4g", X[i][j]); // print the feature value - if (j < num_features - 1) // if not the last feature - fputc(',', fp); // suffix comma + fprintf(fp, "%.4g", X[i][j]); // print the feature value + if (j < num_features - 1) // if not the last feature + fputc(',', fp); // suffix comma } - if (i < num_points - 1) // if not the last row - fputc('\n', fp); // start a new line + if (i < num_points - 1) // if not the last row + fputc('\n', fp); // start a new line } fclose(fp); return 0; @@ -134,7 +134,7 @@ int save_2d_data(const char *fname, double **X, int num_points, int save_u_matrix(const char *fname, struct array_3d *W) { FILE *fp = fopen(fname, "wt"); - if (!fp) // error with fopen + if (!fp) // error with fopen { char msg[120]; sprintf(msg, "File error (%s): ", fname); @@ -144,9 +144,9 @@ int save_u_matrix(const char *fname, struct array_3d *W) int R = max(W->dim1 >> 3, 2); /* neighborhood range */ - for (int i = 0; i < W->dim1; i++) // for each x + for (int i = 0; i < W->dim1; i++) // for each x { - for (int j = 0; j < W->dim2; j++) // for each y + for (int j = 0; j < W->dim2; j++) // for each y { double distance = 0.f; int k; @@ -159,12 +159,12 @@ int save_u_matrix(const char *fname, struct array_3d *W) #ifdef _OPENMP #pragma omp parallel for reduction(+ : distance) #endif - for (l = from_x; l < to_x; l++) // scan neighborhoor in x + for (l = from_x; l < to_x; l++) // scan neighborhoor in x { - for (int m = from_y; m < to_y; m++) // scan neighborhood in y + for (int m = from_y; m < to_y; m++) // scan neighborhood in y { double d = 0.f; - for (k = 0; k < W->dim3; k++) // for each feature + for (k = 0; k < W->dim3; k++) // for each feature { double *w1 = data_3d(W, i, j, k); double *w2 = data_3d(W, l, m, k); @@ -176,13 +176,13 @@ int save_u_matrix(const char *fname, struct array_3d *W) } } - distance /= R * R; // mean distance from neighbors - fprintf(fp, "%.4g", distance); // print the mean separation - if (j < W->dim2 - 1) // if not the last column - fputc(',', fp); // suffix comma + distance /= R * R; // mean distance from neighbors + fprintf(fp, "%.4g", distance); // print the mean separation + if (j < W->dim2 - 1) // if not the last column + fputc(',', fp); // suffix comma } - if (i < W->dim1 - 1) // if not the last row - fputc('\n', fp); // start a new line + if (i < W->dim1 - 1) // if not the last row + fputc('\n', fp); // start a new line } fclose(fp); return 0; @@ -198,14 +198,14 @@ int save_u_matrix(const char *fname, struct array_3d *W) */ void get_min_2d(double **X, int N, double *val, int *x_idx, int *y_idx) { - val[0] = INFINITY; // initial min value + val[0] = INFINITY; // initial min value - for (int i = 0; i < N; i++) // traverse each x-index + for (int i = 0; i < N; i++) // traverse each x-index { - for (int j = 0; j < N; j++) // traverse each y-index + for (int j = 0; j < N; j++) // traverse each y-index { - if (X[i][j] < val[0]) // if a lower value is found - { // save the value and its index + if (X[i][j] < val[0]) // if a lower value is found + { // save the value and its index x_idx[0] = i; y_idx[0] = j; val[0] = X[i][j]; @@ -314,7 +314,7 @@ void kohonen_som(double **X, struct array_3d *W, int num_samples, for (int i = 0; i < num_out; i++) D[i] = (double *)malloc(num_out * sizeof(double)); - double dmin = 1.f; // average minimum distance of all samples + double dmin = 1.f; // average minimum distance of all samples // Loop alpha from 1 to slpha_min for (double alpha = 1.f; alpha > alpha_min && dmin > 1e-3; @@ -339,8 +339,7 @@ void kohonen_som(double **X, struct array_3d *W, int num_samples, } putchar('\n'); - for (int i = 0; i < num_out; i++) - free(D[i]); + for (int i = 0; i < num_out; i++) free(D[i]); free(D); } @@ -356,15 +355,15 @@ void kohonen_som(double **X, struct array_3d *W, int num_samples, */ void test_2d_classes(double *const *data, int N) { - const double R = 0.3; // radius of cluster + const double R = 0.3; // radius of cluster int i; const int num_classes = 4; const double centres[][2] = { // centres of each class cluster - {.5, .5}, // centre of class 1 - {.5, -.5}, // centre of class 2 - {-.5, .5}, // centre of class 3 - {-.5, -.5} // centre of class 4 + {.5, .5}, // centre of class 1 + {.5, -.5}, // centre of class 2 + {-.5, .5}, // centre of class 3 + {-.5, -.5} // centre of class 4 }; #ifdef _OPENMP @@ -372,7 +371,8 @@ void test_2d_classes(double *const *data, int N) #endif for (i = 0; i < N; i++) { - int class = rand() % num_classes; // select a random class for the point + int class = + rand() % num_classes; // select a random class for the point // create random coordinates (x,y,z) around the centre of the class data[i][0] = _random(centres[class][0] - R, centres[class][0] + R); @@ -397,7 +397,7 @@ void test1() { int j, N = 300; int features = 2; - int num_out = 30; // image size - N x N + int num_out = 30; // image size - N x N // 2D space, hence size = number of rows * 2 double **X = (double **)malloc(N * sizeof(double *)); @@ -408,13 +408,13 @@ void test1() W.dim2 = num_out; W.dim3 = features; W.data = (double *)malloc(num_out * num_out * features * - sizeof(double)); // assign rows + sizeof(double)); // assign rows - for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) + for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) { - if (i < N) // only add new arrays if i < N + if (i < N) // only add new arrays if i < N X[i] = (double *)malloc(features * sizeof(double)); - if (i < num_out) // only add new arrays if i < num_out + if (i < num_out) // only add new arrays if i < num_out { for (int k = 0; k < num_out; k++) { @@ -431,14 +431,13 @@ void test1() } } - test_2d_classes(X, N); // create test data around circumference of a circle - save_2d_data("test1.csv", X, N, features); // save test data points - save_u_matrix("w11.csv", &W); // save initial random weights - kohonen_som(X, &W, N, features, num_out, 1e-4); // train the SOM - save_u_matrix("w12.csv", &W); // save the resultant weights + test_2d_classes(X, N); // create test data around circumference of a circle + save_2d_data("test1.csv", X, N, features); // save test data points + save_u_matrix("w11.csv", &W); // save initial random weights + kohonen_som(X, &W, N, features, num_out, 1e-4); // train the SOM + save_u_matrix("w12.csv", &W); // save the resultant weights - for (int i = 0; i < N; i++) - free(X[i]); + for (int i = 0; i < N; i++) free(X[i]); free(X); free(W.data); } @@ -455,15 +454,15 @@ void test1() */ void test_3d_classes1(double *const *data, int N) { - const double R = 0.2; // radius of cluster + const double R = 0.2; // radius of cluster int i; const int num_classes = 4; const double centres[][3] = { // centres of each class cluster - {.5, .5, .5}, // centre of class 1 - {.5, -.5, -.5}, // centre of class 2 - {-.5, .5, .5}, // centre of class 3 - {-.5, -.5 - .5} // centre of class 4 + {.5, .5, .5}, // centre of class 1 + {.5, -.5, -.5}, // centre of class 2 + {-.5, .5, .5}, // centre of class 3 + {-.5, -.5 - .5} // centre of class 4 }; #ifdef _OPENMP @@ -471,7 +470,8 @@ void test_3d_classes1(double *const *data, int N) #endif for (i = 0; i < N; i++) { - int class = rand() % num_classes; // select a random class for the point + int class = + rand() % num_classes; // select a random class for the point // create random coordinates (x,y,z) around the centre of the class data[i][0] = _random(centres[class][0] - R, centres[class][0] + R); @@ -497,7 +497,7 @@ void test2() { int j, N = 500; int features = 3; - int num_out = 30; // image size - N x N + int num_out = 30; // image size - N x N // 3D space, hence size = number of rows * 3 double **X = (double **)malloc(N * sizeof(double *)); @@ -508,13 +508,13 @@ void test2() W.dim2 = num_out; W.dim3 = features; W.data = (double *)malloc(num_out * num_out * features * - sizeof(double)); // assign rows + sizeof(double)); // assign rows - for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) + for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) { - if (i < N) // only add new arrays if i < N + if (i < N) // only add new arrays if i < N X[i] = (double *)malloc(features * sizeof(double)); - if (i < num_out) // only add new arrays if i < num_out + if (i < num_out) // only add new arrays if i < num_out { for (int k = 0; k < num_out; k++) { @@ -522,7 +522,7 @@ void test2() #pragma omp for #endif for (j = 0; j < features; j++) - { // preallocate with random initial weights + { // preallocate with random initial weights double *w = data_3d(&W, i, k, j); w[0] = _random(-5, 5); } @@ -530,14 +530,13 @@ void test2() } } - test_3d_classes1(X, N); // create test data - save_2d_data("test2.csv", X, N, features); // save test data points - save_u_matrix("w21.csv", &W); // save initial random weights - kohonen_som(X, &W, N, features, num_out, 1e-4); // train the SOM - save_u_matrix("w22.csv", &W); // save the resultant weights + test_3d_classes1(X, N); // create test data + save_2d_data("test2.csv", X, N, features); // save test data points + save_u_matrix("w21.csv", &W); // save initial random weights + kohonen_som(X, &W, N, features, num_out, 1e-4); // train the SOM + save_u_matrix("w22.csv", &W); // save the resultant weights - for (int i = 0; i < N; i++) - free(X[i]); + for (int i = 0; i < N; i++) free(X[i]); free(X); free(W.data); } @@ -554,19 +553,19 @@ void test2() */ void test_3d_classes2(double *const *data, int N) { - const double R = 0.2; // radius of cluster + const double R = 0.2; // radius of cluster int i; const int num_classes = 8; const double centres[][3] = { // centres of each class cluster - {.5, .5, .5}, // centre of class 1 - {.5, .5, -.5}, // centre of class 2 - {.5, -.5, .5}, // centre of class 3 - {.5, -.5, -.5}, // centre of class 4 - {-.5, .5, .5}, // centre of class 5 - {-.5, .5, -.5}, // centre of class 6 - {-.5, -.5, .5}, // centre of class 7 - {-.5, -.5, -.5} // centre of class 8 + {.5, .5, .5}, // centre of class 1 + {.5, .5, -.5}, // centre of class 2 + {.5, -.5, .5}, // centre of class 3 + {.5, -.5, -.5}, // centre of class 4 + {-.5, .5, .5}, // centre of class 5 + {-.5, .5, -.5}, // centre of class 6 + {-.5, -.5, .5}, // centre of class 7 + {-.5, -.5, -.5} // centre of class 8 }; #ifdef _OPENMP @@ -574,7 +573,8 @@ void test_3d_classes2(double *const *data, int N) #endif for (i = 0; i < N; i++) { - int class = rand() % num_classes; // select a random class for the point + int class = + rand() % num_classes; // select a random class for the point // create random coordinates (x,y,z) around the centre of the class data[i][0] = _random(centres[class][0] - R, centres[class][0] + R); @@ -609,13 +609,13 @@ void test3() W.dim2 = num_out; W.dim3 = features; W.data = (double *)malloc(num_out * num_out * features * - sizeof(double)); // assign rows + sizeof(double)); // assign rows - for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) + for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) { - if (i < N) // only add new arrays if i < N + if (i < N) // only add new arrays if i < N X[i] = (double *)malloc(features * sizeof(double)); - if (i < num_out) // only add new arrays if i < num_out + if (i < num_out) // only add new arrays if i < num_out { for (int k = 0; k < num_out; k++) { @@ -632,14 +632,13 @@ void test3() } } - test_3d_classes2(X, N); // create test data around the lamniscate - save_2d_data("test3.csv", X, N, features); // save test data points - save_u_matrix("w31.csv", &W); // save initial random weights - kohonen_som(X, &W, N, features, num_out, 0.01); // train the SOM - save_u_matrix("w32.csv", &W); // save the resultant weights + test_3d_classes2(X, N); // create test data around the lamniscate + save_2d_data("test3.csv", X, N, features); // save test data points + save_u_matrix("w31.csv", &W); // save initial random weights + kohonen_som(X, &W, N, features, num_out, 0.01); // train the SOM + save_u_matrix("w32.csv", &W); // save the resultant weights - for (int i = 0; i < N; i++) - free(X[i]); + for (int i = 0; i < N; i++) free(X[i]); free(X); free(W.data); } diff --git a/machine_learning/kohonen_som_trace.c b/machine_learning/kohonen_som_trace.c index 476f364f..3569f974 100644 --- a/machine_learning/kohonen_som_trace.c +++ b/machine_learning/kohonen_som_trace.c @@ -16,18 +16,18 @@ #include #include #include -#ifdef _OPENMP // check if OpenMP based parallellization is available +#ifdef _OPENMP // check if OpenMP based parallellization is available #include #endif #ifndef max -#define max(a, b) \ - (((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \ +#define max(a, b) \ + (((a) > (b)) ? (a) : (b)) /**< shorthand for maximum value \ */ #endif #ifndef min -#define min(a, b) \ - (((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \ +#define min(a, b) \ + (((a) < (b)) ? (a) : (b)) /**< shorthand for minimum value \ */ #endif @@ -64,7 +64,7 @@ int save_nd_data(const char *fname, double **X, int num_points, int num_features) { FILE *fp = fopen(fname, "wt"); - if (!fp) // error with fopen + if (!fp) // error with fopen { char msg[120]; sprintf(msg, "File error (%s): ", fname); @@ -72,16 +72,16 @@ int save_nd_data(const char *fname, double **X, int num_points, return -1; } - for (int i = 0; i < num_points; i++) // for each point in the array + for (int i = 0; i < num_points; i++) // for each point in the array { - for (int j = 0; j < num_features; j++) // for each feature in the array + for (int j = 0; j < num_features; j++) // for each feature in the array { - fprintf(fp, "%.4g", X[i][j]); // print the feature value - if (j < num_features - 1) // if not the last feature - fprintf(fp, ","); // suffix comma + fprintf(fp, "%.4g", X[i][j]); // print the feature value + if (j < num_features - 1) // if not the last feature + fprintf(fp, ","); // suffix comma } - if (i < num_points - 1) // if not the last row - fprintf(fp, "\n"); // start a new line + if (i < num_points - 1) // if not the last row + fprintf(fp, "\n"); // start a new line } fclose(fp); return 0; @@ -96,12 +96,12 @@ int save_nd_data(const char *fname, double **X, int num_points, */ void get_min_1d(double const *X, int N, double *val, int *idx) { - val[0] = INFINITY; // initial min value + val[0] = INFINITY; // initial min value - for (int i = 0; i < N; i++) // check each value + for (int i = 0; i < N; i++) // check each value { - if (X[i] < val[0]) // if a lower value is found - { // save the value and its index + if (X[i] < val[0]) // if a lower value is found + { // save the value and its index idx[0] = i; val[0] = X[i]; } @@ -212,8 +212,8 @@ void kohonen_som_tracer(double **X, double *const *W, int num_samples, void test_circle(double *const *data, int N) { const double R = 0.75, dr = 0.3; - double a_t = 0., b_t = 2.f * M_PI; // theta random between 0 and 2*pi - double a_r = R - dr, b_r = R + dr; // radius random between R-dr and R+dr + double a_t = 0., b_t = 2.f * M_PI; // theta random between 0 and 2*pi + double a_r = R - dr, b_r = R + dr; // radius random between R-dr and R+dr int i; #ifdef _OPENMP @@ -221,9 +221,9 @@ void test_circle(double *const *data, int N) #endif for (i = 0; i < N; i++) { - double r = _random(a_r, b_r); // random radius - double theta = _random(a_t, b_t); // random theta - data[i][0] = r * cos(theta); // convert from polar to cartesian + double r = _random(a_r, b_r); // random radius + double theta = _random(a_t, b_t); // random theta + data[i][0] = r * cos(theta); // convert from polar to cartesian data[i][1] = r * sin(theta); } } @@ -245,7 +245,7 @@ void test_circle(double *const *data, int N) * "w12.csv" title "w2" * ``` * ![Sample execution - * output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test1.svg) + * output](https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/kohonen/test1.svg) */ void test1() { @@ -259,28 +259,28 @@ void test1() // number of clusters nodes * 2 double **W = (double **)malloc(num_out * sizeof(double *)); - for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) + for (int i = 0; i < max(num_out, N); i++) // loop till max(N, num_out) { - if (i < N) // only add new arrays if i < N + if (i < N) // only add new arrays if i < N X[i] = (double *)malloc(features * sizeof(double)); - if (i < num_out) // only add new arrays if i < num_out + if (i < num_out) // only add new arrays if i < num_out { W[i] = (double *)malloc(features * sizeof(double)); #ifdef _OPENMP #pragma omp for #endif // preallocate with random initial weights - for (j = 0; j < features; j++) - W[i][j] = _random(-1, 1); + for (j = 0; j < features; j++) W[i][j] = _random(-1, 1); } } - test_circle(X, N); // create test data around circumference of a circle - save_nd_data("test1.csv", X, N, features); // save test data points + test_circle(X, N); // create test data around circumference of a circle + save_nd_data("test1.csv", X, N, features); // save test data points save_nd_data("w11.csv", W, num_out, - features); // save initial random weights - kohonen_som_tracer(X, W, N, features, num_out, 0.1); // train the SOM - save_nd_data("w12.csv", W, num_out, features); // save the resultant weights + features); // save initial random weights + kohonen_som_tracer(X, W, N, features, num_out, 0.1); // train the SOM + save_nd_data("w12.csv", W, num_out, + features); // save the resultant weights for (int i = 0; i < max(num_out, N); i++) { @@ -315,10 +315,10 @@ void test_lamniscate(double *const *data, int N) #endif for (i = 0; i < N; i++) { - double dx = _random(-dr, dr); // random change in x - double dy = _random(-dr, dr); // random change in y - double theta = _random(0, M_PI); // random theta - data[i][0] = dx + cos(theta); // convert from polar to cartesian + double dx = _random(-dr, dr); // random change in x + double dy = _random(-dr, dr); // random change in y + double theta = _random(0, M_PI); // random theta + data[i][0] = dx + cos(theta); // convert from polar to cartesian data[i][1] = dy + sin(2. * theta) / 2.f; } } @@ -342,7 +342,7 @@ void test_lamniscate(double *const *data, int N) * "w22.csv" title "w2" * ``` * ![Sample execution - * output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test2.svg) + * output](https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/kohonen/test2.svg) */ void test2() { @@ -353,9 +353,9 @@ void test2() double **W = (double **)malloc(num_out * sizeof(double *)); for (int i = 0; i < max(num_out, N); i++) { - if (i < N) // only add new arrays if i < N + if (i < N) // only add new arrays if i < N X[i] = (double *)malloc(features * sizeof(double)); - if (i < num_out) // only add new arrays if i < num_out + if (i < num_out) // only add new arrays if i < num_out { W[i] = (double *)malloc(features * sizeof(double)); @@ -363,17 +363,17 @@ void test2() #pragma omp for #endif // preallocate with random initial weights - for (j = 0; j < features; j++) - W[i][j] = _random(-1, 1); + for (j = 0; j < features; j++) W[i][j] = _random(-1, 1); } } - test_lamniscate(X, N); // create test data around the lamniscate - save_nd_data("test2.csv", X, N, features); // save test data points + test_lamniscate(X, N); // create test data around the lamniscate + save_nd_data("test2.csv", X, N, features); // save test data points save_nd_data("w21.csv", W, num_out, - features); // save initial random weights - kohonen_som_tracer(X, W, N, features, num_out, 0.01); // train the SOM - save_nd_data("w22.csv", W, num_out, features); // save the resultant weights + features); // save initial random weights + kohonen_som_tracer(X, W, N, features, num_out, 0.01); // train the SOM + save_nd_data("w22.csv", W, num_out, + features); // save the resultant weights for (int i = 0; i < max(num_out, N); i++) { @@ -398,15 +398,15 @@ void test2() */ void test_3d_classes(double *const *data, int N) { - const double R = 0.1; // radius of cluster + const double R = 0.1; // radius of cluster int i; const int num_classes = 4; const double centres[][3] = { // centres of each class cluster - {.5, .5, .5}, // centre of class 1 - {.5, -.5, -.5}, // centre of class 2 - {-.5, .5, .5}, // centre of class 3 - {-.5, -.5 - .5} // centre of class 4 + {.5, .5, .5}, // centre of class 1 + {.5, -.5, -.5}, // centre of class 2 + {-.5, .5, .5}, // centre of class 3 + {-.5, -.5 - .5} // centre of class 4 }; #ifdef _OPENMP @@ -414,7 +414,8 @@ void test_3d_classes(double *const *data, int N) #endif for (i = 0; i < N; i++) { - int class = rand() % num_classes; // select a random class for the point + int class = + rand() % num_classes; // select a random class for the point // create random coordinates (x,y,z) around the centre of the class data[i][0] = _random(centres[class][0] - R, centres[class][0] + R); @@ -445,7 +446,7 @@ void test_3d_classes(double *const *data, int N) * "w32.csv" title "w2" * ``` * ![Sample execution - * output](https://raw.githubusercontent.com/kvedala/C/docs/images/machine_learning/kohonen/test3.svg) + * output](https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/kohonen/test3.svg) */ void test3() { @@ -456,9 +457,9 @@ void test3() double **W = (double **)malloc(num_out * sizeof(double *)); for (int i = 0; i < max(num_out, N); i++) { - if (i < N) // only add new arrays if i < N + if (i < N) // only add new arrays if i < N X[i] = (double *)malloc(features * sizeof(double)); - if (i < num_out) // only add new arrays if i < num_out + if (i < num_out) // only add new arrays if i < num_out { W[i] = (double *)malloc(features * sizeof(double)); @@ -466,17 +467,17 @@ void test3() #pragma omp for #endif // preallocate with random initial weights - for (j = 0; j < features; j++) - W[i][j] = _random(-1, 1); + for (j = 0; j < features; j++) W[i][j] = _random(-1, 1); } } - test_3d_classes(X, N); // create test data around the lamniscate - save_nd_data("test3.csv", X, N, features); // save test data points + test_3d_classes(X, N); // create test data around the lamniscate + save_nd_data("test3.csv", X, N, features); // save test data points save_nd_data("w31.csv", W, num_out, - features); // save initial random weights - kohonen_som_tracer(X, W, N, features, num_out, 0.01); // train the SOM - save_nd_data("w32.csv", W, num_out, features); // save the resultant weights + features); // save initial random weights + kohonen_som_tracer(X, W, N, features, num_out, 0.01); // train the SOM + save_nd_data("w32.csv", W, num_out, + features); // save the resultant weights for (int i = 0; i < max(num_out, N); i++) { @@ -524,7 +525,8 @@ int main(int argc, char **argv) end_clk = clock(); printf("Test 3 completed in %.4g sec\n", get_clock_diff(start_clk, end_clk)); - printf("(Note: Calculated times include: creating test sets, training " - "model and writing files to disk.)\n\n"); + printf( + "(Note: Calculated times include: creating test sets, training " + "model and writing files to disk.)\n\n"); return 0; } diff --git a/numerical_methods/durand_kerner_roots.c b/numerical_methods/durand_kerner_roots.c index 440fad1c..8b032aa7 100644 --- a/numerical_methods/durand_kerner_roots.c +++ b/numerical_methods/durand_kerner_roots.c @@ -21,10 +21,10 @@ * Sample implementation results to compute approximate roots of the equation * \f$x^4-1=0\f$:\n * Error evolution during root approximations computed every
  * iteration. Roots evolution - shows the initial approximation of the
  * roots and their convergence to a final approximation along with the iterative
  * approximations @@ -53,8 +53,7 @@ long double complex poly_function(double *coeffs, unsigned int degree, long double complex out = 0.; unsigned int n; - for (n = 0; n < degree; n++) - out += coeffs[n] * cpow(x, degree - n - 1); + for (n = 0; n < degree; n++) out += coeffs[n] * cpow(x, degree - n - 1); return out; } @@ -102,8 +101,9 @@ int main(int argc, char **argv) if (argc < 2) { - printf("Please pass the coefficients of the polynomial as commandline " - "arguments.\n"); + printf( + "Please pass the coefficients of the polynomial as commandline " + "arguments.\n"); return 0; } @@ -224,8 +224,7 @@ int main(int argc, char **argv) if (iter % 500 == 0) { printf("Iter: %lu\t", iter); - for (n = 0; n < degree - 1; n++) - printf("\t%s", complex_str(s0[n])); + for (n = 0; n < degree - 1; n++) printf("\t%s", complex_str(s0[n])); printf("\t\tabsolute average change: %.4g\n", tol_condition); } @@ -241,8 +240,7 @@ end: #endif printf("\nIterations: %lu\n", iter); - for (n = 0; n < degree - 1; n++) - printf("\t%s\n", complex_str(s0[n])); + for (n = 0; n < degree - 1; n++) printf("\t%s\n", complex_str(s0[n])); printf("absolute average change: %.4g\n", tol_condition); printf("Time taken: %.4g sec\n", (end_time - start_time) / (double)CLOCKS_PER_SEC); diff --git a/numerical_methods/ode_forward_euler.c b/numerical_methods/ode_forward_euler.c index 0f8292fd..ee4451b8 100644 --- a/numerical_methods/ode_forward_euler.c +++ b/numerical_methods/ode_forward_euler.c @@ -22,7 +22,7 @@ * The computation results are stored to a text file `forward_euler.csv` and the * exact soltuion results in `exact.csv` for comparison. * Implementation solution * * To implement [Van der Pol @@ -54,9 +54,9 @@ */ void problem(const double *x, double *y, double *dy) { - const double omega = 1.F; // some const for the problem - dy[0] = y[1]; // x dot - dy[1] = -omega * omega * y[0]; // y dot + const double omega = 1.F; // some const for the problem + dy[0] = y[1]; // x dot + dy[1] = -omega * omega * y[0]; // y dot } /** @@ -83,8 +83,7 @@ void forward_euler_step(const double dx, const double *x, double *y, double *dy) { int o; problem(x, y, dy); - for (o = 0; o < order; o++) - y[o] += dx * dy[o]; + for (o = 0; o < order; o++) y[o] += dx * dy[o]; } /** @@ -116,13 +115,13 @@ double forward_euler(double dx, double x0, double x_max, double *y, /* start integration */ clock_t t1 = clock(); double x = x0; - do // iterate for each step of independent variable + do // iterate for each step of independent variable { if (save_to_file && fp) - fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file - forward_euler_step(dx, &x, y, dy); // perform integration - x += dx; // update step - } while (x <= x_max); // till upper limit of independent variable + fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file + forward_euler_step(dx, &x, y, dy); // perform integration + x += dx; // update step + } while (x <= x_max); // till upper limit of independent variable /* end of integration */ clock_t t2 = clock(); @@ -169,7 +168,7 @@ int main(int argc, char *argv[]) do { - fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file + fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file exact_solution(&x, y); x += step_size; } while (x <= X_MAX); diff --git a/numerical_methods/ode_midpoint_euler.c b/numerical_methods/ode_midpoint_euler.c index 0e823432..eaf72307 100644 --- a/numerical_methods/ode_midpoint_euler.c +++ b/numerical_methods/ode_midpoint_euler.c @@ -21,7 +21,7 @@ * \f} * The computation results are stored to a text file `midpoint_euler.csv` and * the exact soltuion results in `exact.csv` for comparison. Implementation solution * * To implement [Van der Pol @@ -53,9 +53,9 @@ */ void problem(const double *x, double *y, double *dy) { - const double omega = 1.F; // some const for the problem - dy[0] = y[1]; // x dot - dy[1] = -omega * omega * y[0]; // y dot + const double omega = 1.F; // some const for the problem + dy[0] = y[1]; // x dot + dy[1] = -omega * omega * y[0]; // y dot } /** @@ -86,13 +86,11 @@ void midpoint_euler_step(double dx, double *x, double *y, double *dy) double tmp_x = (*x) + 0.5 * dx; double tmp_y[order]; int o; - for (o = 0; o < order; o++) - tmp_y[o] = y[o] + 0.5 * dx * dy[o]; + for (o = 0; o < order; o++) tmp_y[o] = y[o] + 0.5 * dx * dy[o]; problem(&tmp_x, tmp_y, dy); - for (o = 0; o < order; o++) - y[o] += dx * dy[o]; + for (o = 0; o < order; o++) y[o] += dx * dy[o]; } /** @@ -124,13 +122,13 @@ double midpoint_euler(double dx, double x0, double x_max, double *y, /* start integration */ clock_t t1 = clock(); double x = x0; - do // iterate for each step of independent variable + do // iterate for each step of independent variable { if (save_to_file && fp) - fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file - midpoint_euler_step(dx, &x, y, dy); // perform integration - x += dx; // update step - } while (x <= x_max); // till upper limit of independent variable + fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file + midpoint_euler_step(dx, &x, y, dy); // perform integration + x += dx; // update step + } while (x <= x_max); // till upper limit of independent variable /* end of integration */ clock_t t2 = clock(); @@ -177,7 +175,7 @@ int main(int argc, char *argv[]) do { - fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file + fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file exact_solution(&x, y); x += step_size; } while (x <= X_MAX); diff --git a/numerical_methods/ode_semi_implicit_euler.c b/numerical_methods/ode_semi_implicit_euler.c index ce629941..e87d2a91 100644 --- a/numerical_methods/ode_semi_implicit_euler.c +++ b/numerical_methods/ode_semi_implicit_euler.c @@ -21,7 +21,7 @@ * \f} * The computation results are stored to a text file `semi_implicit_euler.csv` * and the exact soltuion results in `exact.csv` for comparison. Implementation solution * * To implement [Van der Pol @@ -33,7 +33,7 @@ * dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0]; * ``` * Van der Pol Oscillator solution * * \see ode_forward_euler.c, ode_midpoint_euler.c @@ -57,9 +57,9 @@ */ void problem(const double *x, double *y, double *dy) { - const double omega = 1.F; // some const for the problem - dy[0] = y[1]; // x dot - dy[1] = -omega * omega * y[0]; // y dot + const double omega = 1.F; // some const for the problem + dy[0] = y[1]; // x dot + dy[1] = -omega * omega * y[0]; // y dot } /** @@ -86,13 +86,13 @@ void semi_implicit_euler_step(double dx, double *x, double *y, double *dy) { int o; - problem(x, y, dy); // update dy once - y[0] += dx * dy[0]; // update y0 + problem(x, y, dy); // update dy once + y[0] += dx * dy[0]; // update y0 - problem(x, y, dy); // update dy once more + problem(x, y, dy); // update dy once more for (o = 1; o < order; o++) - y[o] += dx * dy[o]; // update remaining using new dy + y[o] += dx * dy[o]; // update remaining using new dy *x += dx; } @@ -125,13 +125,13 @@ double semi_implicit_euler(double dx, double x0, double x_max, double *y, /* start integration */ clock_t t1 = clock(); double x = x0; - do // iterate for each step of independent variable + do // iterate for each step of independent variable { if (save_to_file && fp) - fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file - semi_implicit_euler_step(dx, &x, y, dy); // perform integration - x += dx; // update step - } while (x <= x_max); // till upper limit of independent variable + fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file + semi_implicit_euler_step(dx, &x, y, dy); // perform integration + x += dx; // update step + } while (x <= x_max); // till upper limit of independent variable /* end of integration */ clock_t t2 = clock(); @@ -178,7 +178,7 @@ int main(int argc, char *argv[]) do { - fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file + fprintf(fp, "%.4g,%.4g,%.4g\n", x, y[0], y[1]); // write to file exact_solution(&x, y); x += step_size; } while (x <= X_MAX);