rename random(..) -> _random(..) to avoid conflict with similar function name <stdlib.h>

This commit is contained in:
Krishna Vedala 2020-06-03 12:45:44 -04:00
parent 31c145b773
commit bc950d502a

View File

@ -27,7 +27,7 @@
* \param[in] b upper limit * \param[in] b upper limit
* \returns random number in the range \f$[a,b]\f$ * \returns random number in the range \f$[a,b]\f$
*/ */
double random(double a, double b) double _random(double a, double b)
{ {
return ((b - a) * (rand() % 100) / 100.f) + a; return ((b - a) * (rand() % 100) / 100.f) + a;
} }
@ -187,8 +187,8 @@ void test_circle(double *const *data, int N)
#endif #endif
for (i = 0; i < N; i++) for (i = 0; i < N; i++)
{ {
double r = random(a_r, b_r); // random radius double r = _random(a_r, b_r); // random radius
double theta = random(a_t, b_t); // random theta double theta = _random(a_t, b_t); // random theta
data[i][0] = r * cos(theta); // convert from polar to cartesian data[i][0] = r * cos(theta); // convert from polar to cartesian
data[i][1] = r * sin(theta); data[i][1] = r * sin(theta);
} }
@ -231,7 +231,7 @@ void test1()
#endif #endif
// preallocate with random initial weights // preallocate with random initial weights
for (j = 0; j < features; j++) for (j = 0; j < features; j++)
W[i][j] = random(-1, 1); W[i][j] = _random(-1, 1);
} }
} }
@ -266,9 +266,9 @@ void test_lamniscate(double *const *data, int N)
#endif #endif
for (i = 0; i < N; i++) for (i = 0; i < N; i++)
{ {
double dx = random(-dr, dr); // random change in x double dx = _random(-dr, dr); // random change in x
double dy = random(-dr, dr); // random change in y double dy = _random(-dr, dr); // random change in y
double theta = random(0, M_PI); // random theta double theta = _random(0, M_PI); // random theta
data[i][0] = dx + cos(theta); // convert from polar to cartesian data[i][0] = dx + cos(theta); // convert from polar to cartesian
data[i][1] = dy + sin(2. * theta) / 2.f; data[i][1] = dy + sin(2. * theta) / 2.f;
} }
@ -313,7 +313,7 @@ void test2()
#endif #endif
// preallocate with random initial weights // preallocate with random initial weights
for (j = 0; j < features; j++) for (j = 0; j < features; j++)
W[i][j] = random(-1, 1); W[i][j] = _random(-1, 1);
} }
} }