mirror of
https://github.moeyy.xyz/https://github.com/TheAlgorithms/C.git
synced 2023-10-11 15:56:24 +08:00
Add files via upload
This commit is contained in:
parent
bfa35ae8d5
commit
d3ac0338d3
116
Computer Oriented Statistical Methods/statistic/README.md
Normal file
116
Computer Oriented Statistical Methods/statistic/README.md
Normal file
@ -0,0 +1,116 @@
|
||||
# Statistic-library for C
|
||||
|
||||
This repository contains a statistic library for the C programming language which prepare useful functions for dealing with average, standard deviation etc. The library is platform-independent. So you can use this library with any C-compiler.
|
||||
|
||||
### Usage
|
||||
|
||||
You needed to put in the files ```statistic.h``` and ```statistic.c``` in your project directory. After that you include the header file ```statistic.h```
|
||||
in your project. Then you can use the functions of this library. You will find the files ```statistic.h``` and ```statistic.c``` in the directory **src**.
|
||||
|
||||
### Overview about the functions
|
||||
|
||||
The first int-argument represents the size of the sample (double-array).
|
||||
|
||||
```c
|
||||
/*
|
||||
Computes the average of a given sample.
|
||||
The sample is a set of double values.
|
||||
The average-function gets a variable number of arguments.
|
||||
The first argument must be the number of arguments!
|
||||
The averageArray-function instead gets a double-array of values and a int-number that
|
||||
represents the size of the double-array.
|
||||
*/
|
||||
double average_Array(int,const double[]);
|
||||
double average(int,...);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
Computes the standard deviation (n-1)
|
||||
*/
|
||||
double standard_deviation(int,...);
|
||||
double standard_deviation_array(int, const double[]);
|
||||
|
||||
/*
|
||||
Computes the standard deviation (n)
|
||||
*/
|
||||
double standard_deviation_N(int,...);
|
||||
double standard_deviation_N_array(int, const double[]);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
variance: computes the variance (n-1)
|
||||
variance_N: computes the variance (n)
|
||||
*/
|
||||
double variance(int, const double[]);
|
||||
double variance_N(int, const double[]);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
gets the max (min) element of the sample
|
||||
*/
|
||||
double max(int, const double[]);
|
||||
double min(int , const double[]);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
computes the median of the sample
|
||||
*/
|
||||
double median(int, const double[]);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
adds up all values of the sample.
|
||||
*/
|
||||
double sum(int,const double[]);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
computes the range of the sample.
|
||||
*/
|
||||
double range(int, const double[]);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
gets the frequency of the last argument (double) of that sample.
|
||||
*/
|
||||
double frequency_of(int, const double[], double);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
quartile_I: computes the first quartile.
|
||||
quartile_III: computes the third quartile.
|
||||
The second quartile is the median!
|
||||
*/
|
||||
double quartile_I(int, const double[]);
|
||||
double quartile_III(int, const double[]);
|
||||
```
|
||||
|
||||
```c
|
||||
/*
|
||||
computes the quartile distance
|
||||
*/
|
||||
double quartile_distance(int, const double[]);
|
||||
```
|
||||
|
||||
|
||||
### Running the tests
|
||||
|
||||
You navigate in the directory of this repository and type in the console:
|
||||
|
||||
```bash
|
||||
gcc -o myTests test/test.c src/statistic.c -lcunit -lm && ./myTests
|
||||
```
|
||||
|
||||
#### Dependencies for tests
|
||||
|
||||
* CUnit
|
||||
* gcc
|
||||
|
400
Computer Oriented Statistical Methods/statistic/src/statistic.c
Normal file
400
Computer Oriented Statistical Methods/statistic/src/statistic.c
Normal file
@ -0,0 +1,400 @@
|
||||
/*
|
||||
author: Christian Bender
|
||||
This file contains the implementation part of the statistic-library.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdarg.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "statistic.h"
|
||||
|
||||
double average(int n, ...)
|
||||
{
|
||||
va_list valist;
|
||||
double sum = 0;
|
||||
int i;
|
||||
|
||||
/* initializes valist for num number of arguments */
|
||||
va_start(valist, n);
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
|
||||
sum += va_arg(valist, double);
|
||||
}
|
||||
|
||||
/* cleans memory reserved for valist */
|
||||
va_end(valist);
|
||||
|
||||
return sum / n;
|
||||
}
|
||||
|
||||
double average_Array(int n, const double values[])
|
||||
{
|
||||
int i;
|
||||
double sum = 0;
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
sum += values[i];
|
||||
}
|
||||
|
||||
return sum / n;
|
||||
}
|
||||
|
||||
double standard_deviation(int n, ...)
|
||||
{
|
||||
va_list valist;
|
||||
double var = 0;
|
||||
double avg = 0;
|
||||
double value = 0;
|
||||
double values[n];
|
||||
int i;
|
||||
|
||||
/* initializes valist for num number of arguments */
|
||||
va_start(valist, n);
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
values[i] = va_arg(valist, double);
|
||||
}
|
||||
|
||||
va_end(valist);
|
||||
va_start(valist, n);
|
||||
|
||||
/* fetches the average */
|
||||
avg = average_Array(n, values);
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
value = va_arg(valist, double);
|
||||
var += (value - avg) * (value - avg);
|
||||
}
|
||||
|
||||
var /= (double)(n - 1);
|
||||
|
||||
/* cleans memory reserved for valist */
|
||||
va_end(valist);
|
||||
|
||||
return sqrt(var);
|
||||
}
|
||||
|
||||
double standard_deviation_array(int n, const double values[])
|
||||
{
|
||||
|
||||
double var = 0;
|
||||
double avg = 0;
|
||||
int i;
|
||||
|
||||
/* fetches the average */
|
||||
avg = average_Array(n, values);
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
var += (values[i] - avg) * (values[i] - avg);
|
||||
}
|
||||
|
||||
var /= (double)(n - 1);
|
||||
|
||||
return sqrt(var);
|
||||
}
|
||||
|
||||
double standard_deviation_N(int n, ...)
|
||||
{
|
||||
va_list valist;
|
||||
double var = 0;
|
||||
double avg = 0;
|
||||
double value = 0;
|
||||
double values[n];
|
||||
int i;
|
||||
|
||||
/* initializes valist for num number of arguments */
|
||||
va_start(valist, n);
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
values[i] = va_arg(valist, double);
|
||||
}
|
||||
|
||||
va_end(valist);
|
||||
va_start(valist, n);
|
||||
|
||||
/* fetches the average */
|
||||
avg = average_Array(n, values);
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
value = va_arg(valist, double);
|
||||
var += (value - avg) * (value - avg);
|
||||
}
|
||||
|
||||
var /= (double)n;
|
||||
|
||||
/* cleans memory reserved for valist */
|
||||
va_end(valist);
|
||||
|
||||
return sqrt(var);
|
||||
}
|
||||
|
||||
double standard_deviation_N_array(int n, const double values[])
|
||||
{
|
||||
double var = 0;
|
||||
double avg = 0;
|
||||
int i;
|
||||
|
||||
/* fetches the average */
|
||||
avg = average_Array(n, values);
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
var += (values[i] - avg) * (values[i] - avg);
|
||||
}
|
||||
|
||||
var /= (double)n;
|
||||
|
||||
return sqrt(var);
|
||||
}
|
||||
|
||||
double variance(int n, const double values[])
|
||||
{
|
||||
double var = 0;
|
||||
double avg = 0;
|
||||
int i;
|
||||
|
||||
/* fetches the average */
|
||||
avg = average_Array(n, values);
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
var += (values[i] - avg) * (values[i] - avg);
|
||||
}
|
||||
|
||||
var /= (double)(n - 1);
|
||||
|
||||
return var;
|
||||
}
|
||||
|
||||
double variance_N(int n, const double values[])
|
||||
{
|
||||
double var = 0;
|
||||
double avg = 0;
|
||||
int i;
|
||||
|
||||
/* fetches the average */
|
||||
avg = average_Array(n, values);
|
||||
|
||||
/* adds up all double values of the sample. */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
var += (values[i] - avg) * (values[i] - avg);
|
||||
}
|
||||
|
||||
var /= (double)n;
|
||||
|
||||
return var;
|
||||
}
|
||||
|
||||
double max(int n, const double values[])
|
||||
{
|
||||
double max = values[0];
|
||||
int i;
|
||||
|
||||
/* iterates over all elements in 'values' */
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
if (values[i] > max)
|
||||
{
|
||||
max = values[i];
|
||||
}
|
||||
}
|
||||
|
||||
return max;
|
||||
}
|
||||
|
||||
double min(int n, const double values[])
|
||||
{
|
||||
double min = values[0];
|
||||
int i;
|
||||
|
||||
/* iterates over all elements in 'values' */
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
if (values[i] < min)
|
||||
{
|
||||
min = values[i];
|
||||
}
|
||||
}
|
||||
|
||||
return min;
|
||||
}
|
||||
|
||||
/*
|
||||
private helper-function for comparing two double values
|
||||
*/
|
||||
int cmp(const void *a, const void *b)
|
||||
{
|
||||
return (*(double *)a - *(double *)b);
|
||||
}
|
||||
|
||||
double median(int n, const double values[])
|
||||
{
|
||||
double tmp[n];
|
||||
int i;
|
||||
|
||||
/* clones the array 'values' to array 'tmp' */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
tmp[i] = values[i];
|
||||
}
|
||||
|
||||
/* sorts the array 'tmp' with quicksort from stdlib.h */
|
||||
qsort(tmp, n, sizeof(double), cmp);
|
||||
|
||||
if (n % 2 != 0) /* n is odd */
|
||||
{
|
||||
/* integer division */
|
||||
return tmp[n / 2];
|
||||
}
|
||||
else
|
||||
{ /* n is even */
|
||||
|
||||
/* uses the average(...) function, above. */
|
||||
return average(2, tmp[n / 2], tmp[(n / 2) - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
double sum(int n, const double values[])
|
||||
{
|
||||
double sum = 0;
|
||||
int i;
|
||||
|
||||
/* actual adding procedure */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
sum += values[i];
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
double range(int n, const double values[])
|
||||
{
|
||||
return max(n, values) - min(n, values);
|
||||
}
|
||||
|
||||
double frequency_of(int n, const double values[], double val)
|
||||
{
|
||||
int i;
|
||||
double counter = 0;
|
||||
|
||||
/* counts the number of occurs */
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
if (values[i] == val)
|
||||
{
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
|
||||
return counter / n;
|
||||
}
|
||||
|
||||
double quartile_I(int n, const double values[])
|
||||
{
|
||||
double sum = 0;
|
||||
double freq = 0;
|
||||
int i;
|
||||
int d = 1;
|
||||
double tmp[n];
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
tmp[i] = values[i];
|
||||
}
|
||||
|
||||
/* sorts the array 'tmp' with quicksort from stdlib.h */
|
||||
qsort(tmp, n, sizeof(double), cmp);
|
||||
|
||||
double lastVal = tmp[0];
|
||||
|
||||
freq = frequency_of(n, values, lastVal);
|
||||
sum += freq;
|
||||
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
if (tmp[i] != lastVal)
|
||||
{
|
||||
freq = frequency_of(n, values, tmp[i]);
|
||||
sum += freq;
|
||||
lastVal = tmp[i];
|
||||
if (sum >= 0.25)
|
||||
{
|
||||
if (n % 2 != 0)
|
||||
{
|
||||
return values[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
return average(2, values[i], values[i + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double quartile_III(int n, const double values[])
|
||||
{
|
||||
double sum = 0;
|
||||
double freq = 0;
|
||||
int i;
|
||||
double tmp[n];
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
tmp[i] = values[i];
|
||||
}
|
||||
|
||||
/* sorts the array 'tmp' with quicksort from stdlib.h */
|
||||
qsort(tmp, n, sizeof(double), cmp);
|
||||
|
||||
double lastVal = tmp[0];
|
||||
|
||||
freq = frequency_of(n, values, lastVal);
|
||||
sum += freq;
|
||||
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
if (tmp[i] != lastVal)
|
||||
{
|
||||
freq = frequency_of(n, values, tmp[i]);
|
||||
sum += freq;
|
||||
lastVal = tmp[i];
|
||||
if (sum >= 0.75)
|
||||
{
|
||||
if (n % 2 != 0)
|
||||
{
|
||||
return values[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
return average(2, values[i], values[i + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double quartile_distance(int n, const double values[])
|
||||
{
|
||||
return quartile_III(n, values) - quartile_I(n, values);
|
||||
}
|
@ -0,0 +1,79 @@
|
||||
/*
|
||||
author: Christian Bender
|
||||
This file contains the public interface for the statistic-library.
|
||||
*/
|
||||
|
||||
#ifndef __STATISTIC__H
|
||||
#define __STATISTIC__H
|
||||
|
||||
/*
|
||||
Computes the average of a given sample.
|
||||
The sample is a set of double values.
|
||||
The average-function gets a variable number of arguments. The first argument
|
||||
must be the number of arguments!
|
||||
The averageArray-function instead gets a double-array of values and a int-number that
|
||||
represents the size of the double-array.
|
||||
*/
|
||||
double average_Array(int, const double[]);
|
||||
double average(int, ...);
|
||||
|
||||
/*
|
||||
computes the standard deviation (n-1)
|
||||
*/
|
||||
double standard_deviation(int, ...);
|
||||
double standard_deviation_array(int, const double[]);
|
||||
|
||||
/*
|
||||
computes the standard deviation (n)
|
||||
*/
|
||||
double standard_deviation_N(int, ...);
|
||||
double standard_deviation_N_array(int, const double[]);
|
||||
|
||||
/*
|
||||
variance: computes the variance (n-1)
|
||||
variance_N: computes the variance (n)
|
||||
*/
|
||||
|
||||
double variance(int, const double[]);
|
||||
double variance_N(int, const double[]);
|
||||
|
||||
/*
|
||||
gets the max (min) element of the sample
|
||||
*/
|
||||
double max(int, const double[]);
|
||||
double min(int, const double[]);
|
||||
|
||||
/*
|
||||
computes the median of the sample
|
||||
*/
|
||||
double median(int, const double[]);
|
||||
|
||||
/*
|
||||
adds up all values of the sample.
|
||||
*/
|
||||
double sum(int, const double[]);
|
||||
|
||||
/*
|
||||
computes the range of the sample.
|
||||
*/
|
||||
double range(int, const double[]);
|
||||
|
||||
/*
|
||||
gets the frequency of the last argument (double) of that sample.
|
||||
*/
|
||||
double frequency_of(int, const double[], double);
|
||||
|
||||
/*
|
||||
quartile_I: computes the first quartile.
|
||||
quartile_III: computes the third quartile.
|
||||
The second quartile is the median!
|
||||
*/
|
||||
double quartile_I(int, const double[]);
|
||||
double quartile_III(int, const double[]);
|
||||
|
||||
/*
|
||||
computes the quartile distance
|
||||
*/
|
||||
double quartile_distance(int, const double[]);
|
||||
|
||||
#endif
|
190
Computer Oriented Statistical Methods/statistic/test/test.c
Normal file
190
Computer Oriented Statistical Methods/statistic/test/test.c
Normal file
@ -0,0 +1,190 @@
|
||||
/*
|
||||
author: Christian Bender
|
||||
This file contains a CUnit test suit for the statistic-library
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <CUnit/CUnit.h>
|
||||
#include "CUnit/Basic.h"
|
||||
|
||||
#include "../src/statistic.h"
|
||||
|
||||
/* test for function average(...) */
|
||||
void test_average(void)
|
||||
{
|
||||
CU_ASSERT_DOUBLE_EQUAL(average(3,1.0,2.5,3.5),2.333,0.01);
|
||||
}
|
||||
|
||||
/* test for function averageArray(...) */
|
||||
void test_average_Array(void)
|
||||
{
|
||||
double values[] = {1.0, 2.5, 3.5};
|
||||
CU_ASSERT_DOUBLE_EQUAL(average_Array(3, values), 2.333, 0.01);
|
||||
}
|
||||
|
||||
/* test for function standard_deviation(...) */
|
||||
void test_standard_deviation(void)
|
||||
{
|
||||
CU_ASSERT_DOUBLE_EQUAL(standard_deviation(4, 15.0, 70.0, 25.0, 50.0), 24.8328, 0.01);
|
||||
}
|
||||
|
||||
/* test for function standard_deviation_array() */
|
||||
void test_standard_deviation_array(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(standard_deviation_array(4, values), 24.8328, 0.01);
|
||||
}
|
||||
|
||||
/* test for function standard_deviation_N(...) */
|
||||
void test_standard_deviation_N(void)
|
||||
{
|
||||
CU_ASSERT_DOUBLE_EQUAL(standard_deviation_N(4, 15.0, 70.0, 25.0, 50.0), 21.5058, 0.01);
|
||||
}
|
||||
|
||||
/* test for function standard_deviation_N_array() */
|
||||
void test_standard_deviation_N_array(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(standard_deviation_N_array(4, values), 21.5058, 0.01);
|
||||
}
|
||||
|
||||
/* test for the function variance(...) */
|
||||
void test_variance(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(variance(4, values), 616.6667, 0.01);
|
||||
}
|
||||
|
||||
/* test for the function variance(...) */
|
||||
void test_variance_N(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(variance_N(4, values), 462.5, 0.01);
|
||||
}
|
||||
|
||||
/* test for the max(...) function */
|
||||
void test_max(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(max(4, values), 70.0, 0.01);
|
||||
}
|
||||
|
||||
/* test for the min(...) function */
|
||||
void test_min(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(min(4, values), 15.0, 0.01);
|
||||
}
|
||||
|
||||
/* test for the median(...)-function */
|
||||
void test_median(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(median(4, values), 37.5, 0.01);
|
||||
}
|
||||
|
||||
|
||||
/* test for the sum(...)-function */
|
||||
void test_sum(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(sum(4, values), 160, 0.01);
|
||||
}
|
||||
|
||||
|
||||
/* test for the range(...)-function */
|
||||
void test_range(void)
|
||||
{
|
||||
double values[] = {15.0, 70.0, 25.0, 50.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(range(4, values), 55, 0.01);
|
||||
}
|
||||
|
||||
|
||||
/* test of frequency_of(...)-function */
|
||||
void test_frequency_of(void)
|
||||
{
|
||||
double values[] = {1.0,7.0,2.5,2.5,6.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(frequency_of(5, values,2.5), 0.4, 0.01);
|
||||
CU_ASSERT_DOUBLE_EQUAL(frequency_of(5, values,6.0), 0.2, 0.01);
|
||||
}
|
||||
|
||||
|
||||
/* test of quartile_I(...) and quartile_III(...)-function */
|
||||
void test_quartile(void)
|
||||
{
|
||||
double values[] = {3.0,4.0,5.0,7.0,7.0,7.0,8.0,9.0,11.0,13.0,13.0,13.0,15.0,16.0};
|
||||
double sample[] = {1600.0,2300.0,2300.0,2400.0,2900.0,3200,3500,4500,4600,5200,6500,12000};
|
||||
CU_ASSERT_DOUBLE_EQUAL(quartile_I(14, values), 7.0, 0.01);
|
||||
CU_ASSERT_DOUBLE_EQUAL(quartile_III(14, values), 13.0, 0.01);
|
||||
CU_ASSERT_DOUBLE_EQUAL(quartile_III(12, sample), 4900.0, 0.01);
|
||||
}
|
||||
|
||||
|
||||
/* test for quartile_distance(...)-function */
|
||||
void test_quartile_distance(void)
|
||||
{
|
||||
double values[] = {3.0,4.0,5.0,7.0,7.0,7.0,8.0,9.0,11.0,13.0,13.0,13.0,15.0,16.0};
|
||||
CU_ASSERT_DOUBLE_EQUAL(quartile_distance(14, values), 6.0, 0.01);
|
||||
}
|
||||
|
||||
/*
|
||||
init suite
|
||||
*/
|
||||
int init_suite1(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
clean suite
|
||||
*/
|
||||
int clean_suite1(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* test runner */
|
||||
int main(void)
|
||||
{
|
||||
CU_pSuite pSuite = NULL;
|
||||
|
||||
/* initializes CUnit */
|
||||
if (CUE_SUCCESS != CU_initialize_registry())
|
||||
return CU_get_error();
|
||||
|
||||
/* adds the suit "Test for statistic" to the registry */
|
||||
pSuite = CU_add_suite("Test for statistic", init_suite1, clean_suite1);
|
||||
if (NULL == pSuite)
|
||||
{
|
||||
CU_cleanup_registry();
|
||||
return CU_get_error();
|
||||
}
|
||||
|
||||
/* registers the individual tests to the test-suite */
|
||||
if ((NULL == CU_add_test(pSuite, "test of average()", test_average))
|
||||
|| (NULL == CU_add_test(pSuite, "test of average_Array()", test_average_Array))
|
||||
|| (NULL == CU_add_test(pSuite, "test of standard_deviation()", test_standard_deviation))
|
||||
|| (NULL == CU_add_test(pSuite, "test of standard_deviation_array()", test_standard_deviation_array))
|
||||
|| (NULL == CU_add_test(pSuite, "test of standard_deviation_N_array()", test_standard_deviation_N_array))
|
||||
|| (NULL == CU_add_test(pSuite, "test of standard_deviation_N()", test_standard_deviation_N))
|
||||
|| (NULL == CU_add_test(pSuite, "test of variance()", test_variance))
|
||||
|| (NULL == CU_add_test(pSuite, "test of variance_N()", test_variance_N))
|
||||
|| (NULL == CU_add_test(pSuite, "test of max()", test_max))
|
||||
|| (NULL == CU_add_test(pSuite, "test of min()", test_min))
|
||||
|| (NULL == CU_add_test(pSuite, "test of median()", test_median))
|
||||
|| (NULL == CU_add_test(pSuite, "test of sum()", test_sum))
|
||||
|| (NULL == CU_add_test(pSuite, "test of range()", test_range))
|
||||
|| (NULL == CU_add_test(pSuite, "test of frequency_of()", test_frequency_of))
|
||||
|| (NULL == CU_add_test(pSuite, "test of quartile_I() and quartile_III()", test_quartile))
|
||||
|| (NULL == CU_add_test(pSuite, "test of quartile_distance()", test_quartile_distance)))
|
||||
{
|
||||
CU_cleanup_registry();
|
||||
return CU_get_error();
|
||||
}
|
||||
|
||||
/* runs tests */
|
||||
CU_basic_set_mode(CU_BRM_VERBOSE);
|
||||
CU_basic_run_tests();
|
||||
CU_cleanup_registry();
|
||||
return CU_get_error();
|
||||
}
|
Loading…
Reference in New Issue
Block a user