+a much faster fibonacci computation algorithm

This commit is contained in:
Krishna Vedala 2020-03-07 10:57:52 -05:00
parent bc28239a15
commit fa73fcb983
No known key found for this signature in database
GPG Key ID: BA19ACF8FC8792F7

76
misc/Fibonacci_fast.c Normal file
View File

@ -0,0 +1,76 @@
/**
@file Fibonacci_fast.c
@author: Krishna Vedala
@date 2 October, 2019
@brief Compute \f$m^{mth}\f$ Fibonacci number using the formulae:
\f{eqnarray*}{
F_{2n-1} &=& F_n^2 + F_{n-1}^2 \\
F_{2n} &=& F_n\left(2F_{n-1} + F_n\right)
\f}
*/
#include<stdio.h>
#include<stdlib.h>
#include<locale.h>
/**
Returns the \f$n^{th}\f$ and \f$n+1^{th}\f$ Fibonacci number.
The return variables are C & D respectively.
*/
void fib(unsigned long n, unsigned long *C, unsigned long *D)
{
//Out of Range checking
if(n < 0){
printf("\nNo Such term !\n");
exit(0);
}
unsigned long a, b, c, d;
if (n == 0)
{
C[0] = 0;
if(D)
D[0] = 1;
return;
}
fib(n >> 1, &c, &d); /**< Compute F(n/2) */
a = c * ((d << 1) - c);
b = c * c + d * d;
if (n % 2 == 0) /**< If n is even */
{
C[0] = a;
if(D)
D[0] = b;
return;
}
/**< If n is odd */
C[0] = b;
if(D)
D[0] = a + b;
return;
}
int main(int argc, char *argv[])
{
unsigned long number, result;
setlocale(LC_NUMERIC, ""); // format the printf output
//Asks for the number/position of term in Fibonnacci sequence
if (argc == 2)
number = atoi(argv[1]);
else {
printf("Enter the value of n(n starts from 0 ): ");
scanf("%lu", &number);
}
fib(number, &result, NULL);
printf("The nth term is : %'lu \n", result);
return 0;
}