/** * \file * \brief [Problem 11](https://projecteuler.net/problem=11) solution */ #include #include #include /** * Get number of divisors of a given number * * If \f$x = a \times b\f$, then both \f$a\f$ and \f$b\f$ are divisors of * \f$x\f$. Since multiplication is commutative, we only need to search till a * maximum of \f$a=b = a^2\f$ i.e., till \f$\sqrt{x}\f$. At every integer till * then, there are eaxctly 2 divisors and at \f$a=b\f$, there is only one * divisor. */ long count_divisors(long long n) { long num_divisors = 0; for (long long i = 1; i < sqrtl(n) + 1; i++) if (n % i == 0) num_divisors += 2; else if (i * i == n) num_divisors += 1; return num_divisors; } /** Main function */ int main(int argc, char **argv) { int MAX_DIVISORS = 500; long i = 1, num_divisors; long long triangle_number = 1; if (argc == 2) MAX_DIVISORS = atoi(argv[1]); while (1) { i++; triangle_number += i; num_divisors = count_divisors(triangle_number); if (num_divisors > MAX_DIVISORS) break; } printf("First Triangle number with more than %d divisors: %lld\n", MAX_DIVISORS, triangle_number); return 0; }