/** * @file * @brief Calculates the nth power of a number in O(log(n)) time. * @details * Calculating the nth power of a number requires O(n) time using the naive * method. This algorithm optimizes it through exponentiation by squaring. * https://cp-algorithms.com/algebra/binary-exp.html * @author [Praneeth Jain](https://github.com/PraneethJain) */ #include /// for assert() #include /// for int64 types #include /// for output #include /// for exit() /** * @brief Determines a raised to the nth power via binary exponentiation. * @param base of the given number * @param exponent of the given number * @return a raised to the nth power * @warning * can overflow very quickly. */ int64_t binary_exponentiation(int64_t base, uint64_t exponent) { int64_t result = 1; while (exponent > 0) { if (exponent % 2 == 1) // If the current bit is 1 { result *= base; // Then it must be multiplied to the result } base *= base; // Square the base exponent >>= 1; // Move to the next bit } return result; } /** * @brief self-test implementation * @return void */ static void tests() { assert(binary_exponentiation(5, 3) == 125); assert(binary_exponentiation(-7, 3) == -343); assert(binary_exponentiation(9, 0) == 1); assert(binary_exponentiation(-123, 0) == 1); assert(binary_exponentiation(3, 5) == 243); assert(binary_exponentiation(-4, 5) == -1024); printf("All tests have successfully passed!\n"); } /** * @brief Main function * @return 0 on exit */ int main() { tests(); // run self-test implementations return 0; }