Compute real eigen values and eigen vectors of a symmetric matrix using QR decomposition method.
More...
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "qr_decompose.h"
|
void | create_matrix (double **A, int N) |
|
double ** | mat_mul (double **A, double **B, double **OUT, int R1, int C1, int R2, int C2) |
|
double | eigen_values (double **A, double *eigen_vals, int mat_size, char debug_print) |
|
void | test1 () |
|
void | test2 () |
|
int | main (int argc, char **argv) |
|
Compute real eigen values and eigen vectors of a symmetric matrix using QR decomposition method.
- Author
- Krishna Vedala
◆ EPSILON
◆ LIMS
limit of range of matrix values
◆ create_matrix()
void create_matrix |
( |
double ** |
A, |
|
|
int |
N |
|
) |
| |
create a square matrix of given size with random elements
- Parameters
-
[out] | A | matrix to create (must be pre-allocated in memory) |
[in] | N | matrix size |
28 int i, j, tmp, lim2 =
LIMS >> 1;
33 for (i = 0; i <
N; i++)
35 A[i][i] = (rand() %
LIMS) - lim2;
36 for (j = i + 1; j <
N; j++)
38 tmp = (rand() %
LIMS) - lim2;
◆ eigen_values()
double eigen_values |
( |
double ** |
A, |
|
|
double * |
eigen_vals, |
|
|
int |
mat_size, |
|
|
char |
debug_print |
|
) |
| |
Compute eigen values using iterative shifted QR decomposition algorithm as follows:
- Use last diagonal element of A as eigen value approximation \(c\)
- Shift diagonals of matrix \(A' = A - cI\)
- Decompose matrix \(A'=QR\)
- Compute next approximation \(A'_1 = RQ \)
- Shift diagonals back \(A_1 = A'_1 + cI\)
- Termination condition check: last element below diagonal is almost 0
- If not 0, go back to step 1 with the new approximation \(A_1\)
- If 0, continue to step 7
- Save last known \(c\) as the eigen value.
- Are all eigen values found?
- If not, remove last row and column of \(A_1\) and go back to step 1.
- If yes, stop.
- Note
- The matrix \(A\) gets modified
- Parameters
-
[in,out] | A | matrix to compute eigen values for |
[out] | eig_vals | resultant vector containing computed eigen values |
[in] | mat_size | matrix size |
[in] | debug_print | 1 to print intermediate Q & R matrices, 0 for not to |
- Returns
- time for computation in seconds
106 double **R = (
double **)malloc(
sizeof(
double *) * mat_size);
107 double **Q = (
double **)malloc(
sizeof(
double *) * mat_size);
111 perror(
"Output eigen value vector cannot be NULL!");
116 perror(
"Unable to allocate memory for Q & R!");
121 for (
int i = 0; i < mat_size; i++)
123 R[i] = (
double *)malloc(
sizeof(
double) * mat_size);
124 Q[i] = (
double *)malloc(
sizeof(
double) * mat_size);
127 perror(
"Unable to allocate memory for Q & R.");
135 int rows = mat_size, columns = mat_size;
136 int counter = 0, num_eigs = rows - 1;
139 clock_t t1 = clock();
143 while (fabs(A[num_eigs][num_eigs - 1]) >
EPSILON)
145 last_eig = A[num_eigs][num_eigs];
146 for (
int i = 0; i < rows; i++) A[i][i] -= last_eig;
154 printf(
"-------------------- %d ---------------------\n",
158 mat_mul(R, Q, A, columns, columns, rows, columns);
159 for (
int i = 0; i < rows; i++) A[i][i] += last_eig;
163 eigen_vals[num_eigs] = last_eig;
167 printf(
"========================\n");
168 printf(
"Eigen value: % g,\n", last_eig);
169 printf(
"========================\n");
176 eigen_vals[0] = A[0][0];
177 double dtime = (double)(clock() - t1) / CLOCKS_PER_SEC;
186 for (
int i = 0; i < mat_size; i++)
◆ main()
int main |
( |
int |
argc, |
|
|
char ** |
argv |
|
) |
| |
main function
302 mat_size = atoi(argv[1]);
307 printf(
"Usage: ./qr_eigen_values [mat_size]\n");
313 fprintf(stderr,
"Matrix size should be > 2\n");
317 int i, rows = mat_size, columns = mat_size;
319 double **A = (
double **)malloc(
sizeof(
double *) * mat_size);
321 double *eigen_vals = (
double *)malloc(
sizeof(
double) * mat_size);
324 perror(
"Unable to allocate memory for eigen values!");
327 for (i = 0; i < mat_size; i++)
329 A[i] = (
double *)malloc(
sizeof(
double) * mat_size);
337 double dtime =
eigen_values(A, eigen_vals, mat_size, 0);
338 printf(
"Eigen vals: ");
339 for (i = 0; i < mat_size; i++) printf(
"% 9.4g\t", eigen_vals[i]);
340 printf(
"\nTime taken to compute: % .4g sec\n", dtime);
342 for (
int i = 0; i < mat_size; i++) free(A[i]);
◆ mat_mul()
double** mat_mul |
( |
double ** |
A, |
|
|
double ** |
B, |
|
|
double ** |
OUT, |
|
|
int |
R1, |
|
|
int |
C1, |
|
|
int |
R2, |
|
|
int |
C2 |
|
) |
| |
Perform multiplication of two matrices.
- R2 must be equal to C1
- Resultant matrix size should be R1xC2
- Parameters
-
[in] | A | first matrix to multiply |
[in] | B | second matrix to multiply |
[out] | OUT | output matrix (must be pre-allocated) |
[in] | R1 | number of rows of first matrix |
[in] | C1 | number of columns of first matrix |
[in] | R2 | number of rows of second matrix |
[in] | C2 | number of columns of second matrix |
- Returns
- pointer to resultant matrix
63 perror(
"Matrix dimensions mismatch!");
71 for (i = 0; i < R1; i++)
72 for (
int j = 0; j < C2; j++)
75 for (
int k = 0; k < C1; k++) OUT[i][j] += A[i][k] * B[k][j];
◆ test1()
test function to compute eigen values of a 2x2 matrix
\[\begin{bmatrix} 5 & 7\\ 7 & 11 \end{bmatrix}\]
which are approximately, {15.56158, 0.384227}
208 double X[][2] = {{5, 7}, {7, 11}};
209 double y[] = {15.56158, 0.384227};
213 double **A = (
double **)malloc(mat_size *
sizeof(
double *));
214 for (
int i = 0; i < mat_size; i++) A[i] = X[i];
216 printf(
"------- Test 1 -------\n");
220 for (
int i = 0; i < mat_size; i++)
222 printf(
"%d/5 Checking for %.3g --> ", i + 1, y[i]);
224 for (
int j = 0; j < mat_size && !result; j++)
226 if (fabs(y[i] - eig_vals[j]) < 0.1)
229 printf(
"(%.3g) ", eig_vals[j]);
237 printf(
"Test 1 Passed in %.3g sec\n\n", dtime);
◆ test2()
test function to compute eigen values of a 2x2 matrix
\[\begin{bmatrix} -4& 4& 2& 0& -3\\ 4& -4& 4& -3& -1\\ 2& 4& 4& 3& -3\\ 0& -3& 3& -1&-1\\ -3& -1& -3& -3& 0 \end{bmatrix}\]
which are approximately, {9.27648, -9.26948, 2.0181, -1.03516, -5.98994}
255 double X[][5] = {{-4, 4, 2, 0, -3},
259 {-3, -1, -3, -3, 0}};
260 double y[] = {9.27648, -9.26948, 2.0181, -1.03516,
265 double **A = (
double **)malloc(mat_size *
sizeof(
double *));
266 for (
int i = 0; i < mat_size; i++) A[i] = X[i];
268 printf(
"------- Test 2 -------\n");
272 for (
int i = 0; i < mat_size; i++)
274 printf(
"%d/5 Checking for %.3g --> ", i + 1, y[i]);
276 for (
int j = 0; j < mat_size && !result; j++)
278 if (fabs(y[i] - eig_vals[j]) < 0.1)
281 printf(
"(%.3g) ", eig_vals[j]);
289 printf(
"Test 2 Passed in %.3g sec\n\n", dtime);