/** * @file * \brief Find approximate solution for \f$f(x) = 0\f$ using * Newton-Raphson interpolation algorithm. **/ #include /* requires minimum of C99 */ #include #include #include #include #include #define ACCURACY 1e-10 /**< solution accuracy */ /** * Return value of the function to find the root for. * \f$f(x)\f$ */ double complex func(double complex x) { return x * x - 3.; /* x^2 = 3 - solution is sqrt(3) */ // return x * x - 2.; /* x^2 = 2 - solution is sqrt(2) */ } /** * Return first order derivative of the function. * \f$f'(x)\f$ */ double complex d_func(double complex x) { return 2. * x; } /** * main function */ int main(int argc, char **argv) { double delta = 1; double complex cdelta = 1; /* initialize random seed: */ srand(time(NULL)); /* random initial approximation */ double complex root = (rand() % 100 - 50) + (rand() % 100 - 50) * I; unsigned long counter = 0; /* iterate till a convergence is reached */ while (delta > ACCURACY && counter < ULONG_MAX) { cdelta = func(root) / d_func(root); root += -cdelta; counter++; delta = fabs(cabs(cdelta)); #if defined(DEBUG) || !defined(NDEBUG) if (counter % 50 == 0) { double r = creal(root); double c = cimag(root); printf("Iter %5lu: Root: %4.4g%c%4.4gi\t\tdelta: %.4g\n", counter, r, c >= 0 ? '+' : '-', c >= 0 ? c : -c, delta); } #endif } double r = creal(root); double c = fabs(cimag(root)) < ACCURACY ? 0 : cimag(root); printf("Iter %5lu: Root: %4.4g%c%4.4gi\t\tdelta: %.4g\n", counter, r, c >= 0 ? '+' : '-', c >= 0 ? c : -c, delta); return 0; }