#include #include #include #include #include #include #include /*** * Try the highly unstable Wilkinson's polynomial: * ./numerical_methods/durand_kerner_roots.c 1 -210 20615 -1256850 53327946 -1672280820 40171771630 -756111184500 11310276995381 -135585182899530 1307535010540395 -10142299865511450 63030812099294896 -311333643161390640 1206647803780373360 -3599979517947607200 8037811822645051776 -12870931245150988800 13803759753640704000 -8752948036761600000 2432902008176640000 * */ #define ACCURACY 1e-10 /** * define polynomial function **/ double complex function(double *coeffs, unsigned int degree, double complex x) { double complex out = 0.; unsigned int n; for (n = 0; n < degree; n++) out += coeffs[n] * cpow(x, degree - n - 1); return out; } const char *complex_str(double complex x) { static char msg[50]; double r = creal(x); double c = cimag(x); sprintf(msg, "%.04g%c%.04gi", r, c >= 0 ? '+' : '-', c >= 0 ? c : -c); return msg; } double get_rand() { const double max = 10, min = -10; return (double)rand() / (double)RAND_MAX * (max - min + 1.0); } /*** * the comandline inputs are taken as coeffiecients of a polynomial **/ int main(int argc, char **argv) { double *coeffs = NULL; double complex *s0 = NULL; unsigned int degree = 0; unsigned int n, i; if (argc < 2) { printf("Please pass the coefficients of the polynomial as commandline arguments.\n"); return 0; } degree = argc - 1; /*< detected polynomial degree */ coeffs = (double *)malloc(degree * sizeof(double)); /**< store all input coefficients */ s0 = (double complex *)malloc((degree - 1) * sizeof(double complex)); /**< number of roots = degree-1 */ /* initialize random seed: */ srand(time(NULL)); if (!coeffs || !s0) { perror("Unable to allocate memory!"); if (coeffs) free(coeffs); if (s0) free(s0); return EXIT_FAILURE; } #if defined(DEBUG) || !defined(NDEBUG) /** * store intermediate values to a CSV file **/ FILE *log_file = fopen("durand_kerner.log.csv", "wt"); if (!log_file) { perror("Unable to create a storage log file!"); free(coeffs); free(s0); return EXIT_FAILURE; } fprintf(log_file, "iter#,"); #endif printf("Computing the roots for:\n\t"); for (n = 0; n < degree; n++) { coeffs[n] = strtod(argv[n + 1], NULL); if (n < degree - 1 && coeffs[n] != 0) printf("(%g) x^%d + ", coeffs[n], degree - n - 1); else if (coeffs[n] != 0) printf("(%g) x^%d = 0\n", coeffs[n], degree - n - 1); /* initialize root approximations with random values */ if (n < degree - 1) { s0[n] = get_rand() + get_rand() * I; #if defined(DEBUG) || !defined(NDEBUG) fprintf(log_file, "root_%d,", n); #endif } } #if defined(DEBUG) || !defined(NDEBUG) fprintf(log_file, "avg. correction"); fprintf(log_file, "\n0,"); for (n = 0; n < degree - 1; n++) fprintf(log_file, "%s,", complex_str(s0[n])); #endif double tol_condition = 1; unsigned long iter = 0; while (tol_condition > ACCURACY && iter < INT_MAX) { double complex delta = 0; tol_condition = 0; iter++; #if defined(DEBUG) || !defined(NDEBUG) fprintf(log_file, "\n%ld,", iter); #endif for (n = 0; n < degree - 1; n++) { double complex numerator = function(coeffs, degree, s0[n]); double complex denominator = 1.0; for (i = 0; i < degree - 1; i++) if (i != n) denominator *= s0[n] - s0[i]; if (cabs(denominator) == 0) { printf("denominatpr = 0\n"); goto end; } delta = numerator / denominator; s0[n] -= delta; tol_condition += fabs(cabs(delta)); #if defined(DEBUG) || !defined(NDEBUG) fprintf(log_file, "%s,", complex_str(s0[n])); #endif } tol_condition /= (degree - 1); if (iter % 500 == 0) { printf("Iter: %lu\t", iter); for (n = 0; n < degree - 1; n++) printf("\t%s", complex_str(s0[n])); printf("\t\tabsolute average change: %.4g\n", tol_condition); } #if defined(DEBUG) || !defined(NDEBUG) fprintf(log_file, "%.4g", tol_condition); #endif } end: #if defined(DEBUG) || !defined(NDEBUG) fclose(log_file); #endif printf("Iterations: %lu\n", iter); for (n = 0; n < degree - 1; n++) printf("\t%s\n", complex_str(s0[n])); printf("absolute average change: %.4g\n", tol_condition); free(coeffs); free(s0); return 0; }