#include #include /* A basic unbalanced binary search tree implementation in C, with the following functionalities implemented: - Insertion - Deletion - Search by key value - Listing of node keys in order of value (from left to right) */ // Node, the basic data structure in the tree typedef struct node{ struct node* left; struct node* right; int data; } node; // The node constructor, which receives the key value input and returns a node pointer node* newNode(int data){ node* tmp = (node*)malloc(sizeof(node)); tmp->data = data; tmp->left = NULL; tmp->right = NULL; return tmp; } // Insertion procedure, which inserts the input key in a new node in the tree node* insert(node* root, int data){ // If the root of the subtree is null, insert key here if (root == NULL) root = newNode(data); // If it isn't null and the input key is greater than the root key, insert in the right leaf else if (data > root->data) root->right = insert(root->right, data); // If it isn't null and the input key is lower than the root key, insert in the left leaf else if (data < root->data) root->left = insert(root->left, data); // Returns the modified tree return root; } // Utilitary procedure to find the greatest key in the left subtree node* getMax(node* root){ // If there's no leaf to the right, then this is the maximum key value if (root->right == NULL) return root; else root->right = getMax(root->right); } // Deletion procedure, which searches for the input key in the tree and removes it if present node* delete(node* root, int data){ // If the root is null, nothing to be done if (root == NULL) return root; // If the input key is greater than the root's, search in the right subtree else if (data > root->data) root->right = delete(root->right, data); // If the input key is lower than the root's, search in the left subtree else if (data < root->data) root->left = delete(root->left, data); // If the input key matches the root's, check the following cases else if (data == root->data){ // Case 1: the root has no leaves, remove the node if ((root->left == NULL) && (root->right == NULL)){ free(root); return NULL; } // Case 2: the root has one leaf, make the leaf the new root and remove the old root else if (root->left == NULL){ node* tmp = root; root = root->right; free(tmp); return root; } else if (root->right == NULL){ node* tmp = root; root = root->left; free(tmp); return root; } // Case 3: the root has 2 leaves, find the greatest key in the left subtree and switch with the root's else { node* tmp = getMax(root->left); root->data = tmp->data; root->left = delete(root->left, tmp->data); } } return root; } // Search procedure, which looks for the input key in the tree and returns 1 if it's present or 0 if it's not in the tree int find(node* root, int data){ // If the root is null, the key's not present if (root == NULL) return 0; // If the input key is greater than the root's, search in the right subtree else if (data > root->data) return find(root->right, data); // If the input key is lower than the root's, search in the left subtree else if (data < root->data) return find(root->left, data); // If the input and the root key match, return 1 else if (data == root->data) return 1; } // Utilitary procedure to measure the height of the binary tree int height(node* root){ // If the root is null, this is the bottom of the tree (height 0) if (root == NULL) return 0; else{ // Get the height from both left and right subtrees to check which is the greatest int right_h = height(root->right); int left_h = height(root->left); // The final height is the height of the greatest subtree(left or right) plus 1(which is the root's level) if (right_h > left_h) return (right_h + 1); else return (left_h + 1); } } // Utilitary procedure to free all nodes in a tree void purge(node* root){ if (root != NULL){ if (root->left != NULL) purge(root->left); if (root->right != NULL) purge(root->right); free(root); } } // Traversal procedure to list the current keys in the tree in order of value (from the left to the right) void inOrder(node* root){ if(root != NULL){ inOrder(root->left); printf("\t[ %d ]\t", root->data); inOrder(root->right); } } void main(){ node* root = NULL; int opt = 1; int data; while (opt != 0){ printf("\n\n[1] Insert Node\n[2] Delete Node\n[3] Find a Node\n[4] Get current Height\n[5] Print Tree in Crescent Order\n[0] Quit\n"); scanf("%d",&opt); switch(opt){ case 1: printf("Enter the new node's value:\n"); scanf("%d",&data); root = insert(root,data); break; case 2: printf("Enter the value to be removed:\n"); if (root != NULL){ scanf("%d",&data); root = delete(root,data); } else printf("Tree is already empty!\n"); break; case 3: printf("Enter the searched value:\n"); scanf("%d",&data); find(root,data) ? printf("The value is in the tree.\n") : printf("The value is not in the tree.\n"); break; case 4: printf("Current height of the tree is: %d\n", height(root)); break; case 5: inOrder(root); break; } } purge(root); }