#include #include int fibMonaccianSearch(int arr[], int x, int n) { /* Initialize fibonacci numbers */ int fibMMm2 = 0; // (m-2)'th Fibonacci No. int fibMMm1 = 1; // (m-1)'th Fibonacci No. int fibM = fibMMm2 + fibMMm1; // m'th Fibonacci /* fibM is going to store the smallest Fibonacci Number greater than or equal to n */ while (fibM < n) { fibMMm2 = fibMMm1; fibMMm1 = fibM; fibM = fibMMm2 + fibMMm1; } // Marks the eliminated range from front int offset = -1; /* while there are elements to be inspected. Note that we compare arr[fibMm2] with x. When fibM becomes 1, fibMm2 becomes 0 */ while (fibM > 1) { // Check if fibMm2 is a valid location // sets i to the min. of (offset+fibMMm2) and (n-1) int i = ((offset+fibMMm2) < (n-1)) ? (offset+fibMMm2) : (n-1); /* If x is greater than the value at index fibMm2, cut the subarray array from offset to i */ if (arr[i] < x) { fibM = fibMMm1; fibMMm1 = fibMMm2; fibMMm2 = fibM - fibMMm1; offset = i; } /* If x is greater than the value at index fibMm2, cut the subarray after i+1 */ else if (arr[i] > x) { fibM = fibMMm2; fibMMm1 = fibMMm1 - fibMMm2; fibMMm2 = fibM - fibMMm1; } /* element found. return index */ else return i; } /* comparing the last element with x */ if(fibMMm1 && arr[offset+1]==x)return offset+1; /*element not found. return -1 */ return -1; } int main(void) { int arr[] = {10, 22, 35, 40, 45, 50, 80, 82, 85, 90, 100}; int n = sizeof(arr)/sizeof(arr[0]); int x = 85; printf("Found at index: %d", fibMonaccianSearch(arr, x, n)); return 0; }