/** @file @author Krishna Vedala @date 2 October, 2019 @brief Compute \f$m^{mth}\f$ Fibonacci number using the formulae: \f{eqnarray*}{ F_{2n-1} &=& F_n^2 + F_{n-1}^2 \\ F_{2n} &=& F_n\left(2F_{n-1} + F_n\right) \f} */ #include #include #include /** Returns the \f$n^{th}\f$ and \f$n+1^{th}\f$ Fibonacci number. The return variables are C & D respectively. */ void fib(unsigned long n, unsigned long *C, unsigned long *D) { // Out of Range checking if (n < 0) { printf("\nNo Such term !\n"); exit(0); } unsigned long a, b, c, d; if (n == 0) { C[0] = 0; if (D) D[0] = 1; return; } fib(n >> 1, &c, &d); /* Compute F(n/2) */ a = c * ((d << 1) - c); b = c * c + d * d; if (n % 2 == 0) /* If n is even */ { C[0] = a; if (D) D[0] = b; return; } /**< If n is odd */ C[0] = b; if (D) D[0] = a + b; return; } /** * main function */ int main(int argc, char *argv[]) { unsigned long number, result; setlocale(LC_NUMERIC, ""); // format the printf output // Asks for the number/position of term in Fibonnacci sequence if (argc == 2) number = atoi(argv[1]); else { printf("Enter the value of n(n starts from 0 ): "); scanf("%lu", &number); } fib(number, &result, NULL); printf("The nth term is : %'lu \n", result); return 0; }