Algorithms_in_C  1.0.0
Set of algorithms implemented in C.
realtime_stats.c File Reference

Compute statistics for data entered in rreal-time. More...

#include <assert.h>
#include <math.h>
#include <stdio.h>
Include dependency graph for realtime_stats.c:

Functions

void stats_computer1 (float x, float *mean, float *variance, float *std)
 continuous mean and variance computance using first value as an approximation for the mean. More...
 
void stats_computer2 (float x, float *mean, float *variance, float *std)
 continuous mean and variance computance using Welford's algorithm (very accurate) More...
 
void test_function (const float *test_data, const int number_of_samples)
 Test the algorithm implementation. More...
 
int main (int argc, char **argv)
 Main function.
 

Detailed Description

Compute statistics for data entered in rreal-time.

Author
Krishna Vedala

This algorithm is really beneficial to compute statistics on data read in realtime. For example, devices reading biometrics data. The algorithm is simple enough to be easily implemented in an embedded system.

Function Documentation

◆ stats_computer1()

void stats_computer1 ( float  x,
float *  mean,
float *  variance,
float *  std 
)

continuous mean and variance computance using first value as an approximation for the mean.

If the first number is much far form the mean, the algorithm becomes very inaccurate to compute variance and standard deviation.

Parameters
[in]xnew value added to data set
[out]meanif not NULL, mean returns mean of data set
[out]varianceif not NULL, mean returns variance of data set
[out]stdif not NULL, mean returns standard deviation of data set
25 {
26  /* following variables declared static becuase they need to be remembered
27  * when updating for next sample, when received.
28  */
29  static unsigned int n = 0;
30  static float Ex = 0.f, Ex2 = 0.f;
31  static float K = 0.f;
32 
33  if (n == 0)
34  K = x;
35  n++;
36  float tmp = x - K;
37  Ex += tmp;
38  Ex2 += tmp * tmp;
39 
40  /* return sample mean computed till last sample */
41  if (mean != NULL)
42  *mean = K + Ex / n;
43 
44  /* return data variance computed till last sample */
45  if (variance != NULL)
46  *variance = (Ex2 - (Ex * Ex) / n) / (n - 1);
47 
48  /* return sample standard deviation computed till last sample */
49  if (std != NULL)
50  *std = sqrtf(*variance);
51 }

◆ stats_computer2()

void stats_computer2 ( float  x,
float *  mean,
float *  variance,
float *  std 
)

continuous mean and variance computance using Welford's algorithm (very accurate)

Parameters
[in]xnew value added to data set
[out]meanif not NULL, mean returns mean of data set
[out]varianceif not NULL, mean returns variance of data set
[out]stdif not NULL, mean returns standard deviation of data set
62 {
63  /* following variables declared static becuase they need to be remembered
64  * when updating for next sample, when received.
65  */
66  static unsigned int n = 0;
67  static float mu = 0, M = 0;
68 
69  n++;
70  float delta = x - mu;
71  mu += delta / n;
72  float delta2 = x - mu;
73  M += delta * delta2;
74 
75  /* return sample mean computed till last sample */
76  if (mean != NULL)
77  *mean = mu;
78 
79  /* return data variance computed till last sample */
80  if (variance != NULL)
81  *variance = M / n;
82 
83  /* return sample standard deviation computed till last sample */
84  if (std != NULL)
85  *std = sqrtf(*variance);
86 }

◆ test_function()

void test_function ( const float *  test_data,
const int  number_of_samples 
)

Test the algorithm implementation.

Parameters
[in]test_dataarray of data to test the algorithms
[in]number_of_samplesnumber of samples of data
93 {
94  float ref_mean = 0.f, ref_variance = 0.f;
95  float s1_mean = 0.f, s1_variance = 0.f, s1_std = 0.f;
96  float s2_mean = 0.f, s2_variance = 0.f, s2_std = 0.f;
97 
98  for (int i = 0; i < number_of_samples; i++)
99  {
100  stats_computer1(test_data[i], &s1_mean, &s1_variance, &s1_std);
101  stats_computer2(test_data[i], &s2_mean, &s2_variance, &s2_std);
102  ref_mean += test_data[i];
103  }
104  ref_mean /= number_of_samples;
105 
106  for (int i = 0; i < number_of_samples; i++)
107  {
108  float temp = test_data[i] - ref_mean;
109  ref_variance += temp * temp;
110  }
111  ref_variance /= number_of_samples;
112 
113  printf("<<<<<<<< Test Function >>>>>>>>\n");
114  printf("Expected: Mean: %.4f\t Variance: %.4f\n", ref_mean, ref_variance);
115  printf("\tMethod 1:\tMean: %.4f\t Variance: %.4f\t Std: %.4f\n", s1_mean,
116  s1_variance, s1_std);
117  printf("\tMethod 2:\tMean: %.4f\t Variance: %.4f\t Std: %.4f\n", s2_mean,
118  s2_variance, s2_std);
119 
120  assert(fabs(s1_mean - ref_mean) < 0.01);
121  assert(fabs(s2_mean - ref_mean) < 0.01);
122  assert(fabs(s2_variance - ref_variance) < 0.01);
123 
124  printf("(Tests passed)\n\n");
125 }
void stats_computer2(float x, float *mean, float *variance, float *std)
continuous mean and variance computance using Welford's algorithm (very accurate)
Definition: realtime_stats.c:61
void stats_computer1(float x, float *mean, float *variance, float *std)
continuous mean and variance computance using first value as an approximation for the mean.
Definition: realtime_stats.c:24
Here is the call graph for this function: