Algorithms_in_C  1.0.0
Set of algorithms implemented in C.
adaline_learning.c File Reference

Adaptive Linear Neuron (ADALINE) implementation More...

#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
Include dependency graph for adaline_learning.c:

Data Structures

struct  adaline
 structure to hold adaline model parameters More...
 

Macros

#define MAX_ADALINE_ITER   500
 Maximum number of iterations to learn.
 
#define ADALINE_ACCURACY   1e-5
 convergence accuracy \(=1\times10^{-5}\)
 

Functions

struct adaline new_adaline (const int num_features, const double eta)
 Default constructor. More...
 
void delete_adaline (struct adaline *ada)
 delete dynamically allocated memory More...
 
int adaline_activation (double x)
 Heaviside activation function More...
 
char * adaline_get_weights_str (const struct adaline *ada)
 Operator to print the weights of the model. More...
 
int adaline_predict (struct adaline *ada, const double *x, double *out)
 predict the output of the model for given set of features More...
 
double adaline_fit_sample (struct adaline *ada, const double *x, const int y)
 Update the weights of the model using supervised learning for one feature vector. More...
 
void adaline_fit (struct adaline *ada, double **X, const int *y, const int N)
 Update the weights of the model using supervised learning for an array of vectors. More...
 
void test1 (double eta)
 test function to predict points in a 2D coordinate system above the line \(x=y\) as +1 and others as -1. More...
 
void test2 (double eta)
 test function to predict points in a 2D coordinate system above the line \(x+3y=-1\) as +1 and others as -1. More...
 
void test3 (double eta)
 test function to predict points in a 3D coordinate system lying within the sphere of radius 1 and centre at origin as +1 and others as -1. More...
 
int main (int argc, char **argv)
 Main function.
 

Detailed Description

Adaptive Linear Neuron (ADALINE) implementation

source ADALINE is one of the first and simplest single layer artificial neural network. The algorithm essentially implements a linear function

\[ f\left(x_0,x_1,x_2,\ldots\right) = \sum_j x_jw_j+\theta \]

where \(x_j\) are the input features of a sample, \(w_j\) are the coefficients of the linear function and \(\theta\) is a constant. If we know the \(w_j\), then for any given set of features, \(y\) can be computed. Computing the \(w_j\) is a supervised learning algorithm wherein a set of features and their corresponding outputs are given and weights are computed using stochastic gradient descent method.

Author
Krishna Vedala

Function Documentation

◆ test1()

void test1 ( double  eta)

test function to predict points in a 2D coordinate system above the line \(x=y\) as +1 and others as -1.

Note that each point is defined by 2 values or 2 features.

Parameters
[in]etalearning rate (optional, default=0.01)
226 {
227  struct adaline ada = new_adaline(2, eta); // 2 features
228 
229  const int N = 10; // number of sample points
230  const double saved_X[10][2] = {{0, 1}, {1, -2}, {2, 3}, {3, -1},
231  {4, 1}, {6, -5}, {-7, -3}, {-8, 5},
232  {-9, 2}, {-10, -15}};
233 
234  double **X = (double **)malloc(N * sizeof(double *));
235  const int Y[10] = {1, -1, 1, -1, -1,
236  -1, 1, 1, 1, -1}; // corresponding y-values
237  for (int i = 0; i < N; i++)
238  {
239  X[i] = (double *)saved_X[i];
240  }
241 
242  printf("------- Test 1 -------\n");
243  printf("Model before fit: %s", adaline_get_weights_str(&ada));
244 
245  adaline_fit(&ada, X, Y, N);
246  printf("Model after fit: %s\n", adaline_get_weights_str(&ada));
247 
248  double test_x[] = {5, -3};
249  int pred = adaline_predict(&ada, test_x, NULL);
250  printf("Predict for x=(5,-3): % d", pred);
251  assert(pred == -1);
252  printf(" ...passed\n");
253 
254  double test_x2[] = {5, 8};
255  pred = adaline_predict(&ada, test_x2, NULL);
256  printf("Predict for x=(5, 8): % d", pred);
257  assert(pred == 1);
258  printf(" ...passed\n");
259 
260  // for (int i = 0; i < N; i++)
261  // free(X[i]);
262  free(X);
263  delete_adaline(&ada);
264 }
char * adaline_get_weights_str(const struct adaline *ada)
Operator to print the weights of the model.
Definition: adaline_learning.c:112
void delete_adaline(struct adaline *ada)
delete dynamically allocated memory
Definition: adaline_learning.c:89
void adaline_fit(struct adaline *ada, double **X, const int *y, const int N)
Update the weights of the model using supervised learning for an array of vectors.
Definition: adaline_learning.c:184
int adaline_predict(struct adaline *ada, const double *x, double *out)
predict the output of the model for given set of features
Definition: adaline_learning.c:136
struct adaline new_adaline(const int num_features, const double eta)
Default constructor.
Definition: adaline_learning.c:59
#define malloc(bytes)
This macro replace the standard malloc function with malloc_dbg.
Definition: malloc_dbg.h:18
#define free(ptr)
This macro replace the standard free function with free_dbg.
Definition: malloc_dbg.h:26
structure to hold adaline model parameters
Definition: adaline_learning.c:44
double eta
learning rate of the algorithm
Definition: adaline_learning.c:45
Here is the call graph for this function:

◆ test2()

void test2 ( double  eta)

test function to predict points in a 2D coordinate system above the line \(x+3y=-1\) as +1 and others as -1.

Note that each point is defined by 2 values or 2 features. The function will create random sample points for training and test purposes.

Parameters
[in]etalearning rate (optional, default=0.01)
274 {
275  struct adaline ada = new_adaline(2, eta); // 2 features
276 
277  const int N = 50; // number of sample points
278 
279  double **X = (double **)malloc(N * sizeof(double *));
280  int *Y = (int *)malloc(N * sizeof(int)); // corresponding y-values
281  for (int i = 0; i < N; i++) X[i] = (double *)malloc(2 * sizeof(double));
282 
283  // generate sample points in the interval
284  // [-range2/100 , (range2-1)/100]
285  int range = 500; // sample points full-range
286  int range2 = range >> 1; // sample points half-range
287  for (int i = 0; i < N; i++)
288  {
289  double x0 = ((rand() % range) - range2) / 100.f;
290  double x1 = ((rand() % range) - range2) / 100.f;
291  X[i][0] = x0;
292  X[i][1] = x1;
293  Y[i] = (x0 + 3. * x1) > -1 ? 1 : -1;
294  }
295 
296  printf("------- Test 2 -------\n");
297  printf("Model before fit: %s", adaline_get_weights_str(&ada));
298 
299  adaline_fit(&ada, X, Y, N);
300  printf("Model after fit: %s\n", adaline_get_weights_str(&ada));
301 
302  int N_test_cases = 5;
303  double test_x[2];
304  for (int i = 0; i < N_test_cases; i++)
305  {
306  double x0 = ((rand() % range) - range2) / 100.f;
307  double x1 = ((rand() % range) - range2) / 100.f;
308 
309  test_x[0] = x0;
310  test_x[1] = x1;
311  int pred = adaline_predict(&ada, test_x, NULL);
312  printf("Predict for x=(% 3.2f,% 3.2f): % d", x0, x1, pred);
313 
314  int expected_val = (x0 + 3. * x1) > -1 ? 1 : -1;
315  assert(pred == expected_val);
316  printf(" ...passed\n");
317  }
318 
319  for (int i = 0; i < N; i++) free(X[i]);
320  free(X);
321  free(Y);
322  delete_adaline(&ada);
323 }
Definition: prime_factoriziation.c:25
Here is the call graph for this function:

◆ test3()

void test3 ( double  eta)

test function to predict points in a 3D coordinate system lying within the sphere of radius 1 and centre at origin as +1 and others as -1.

Note that each point is defined by 3 values but we use 6 features. The function will create random sample points for training and test purposes. The sphere centred at origin and radius 1 is defined as: \(x^2+y^2+z^2=r^2=1\) and if the \(r^2<1\), point lies within the sphere else, outside.

Parameters
[in]etalearning rate (optional, default=0.01)
337 {
338  struct adaline ada = new_adaline(6, eta); // 2 features
339 
340  const int N = 50; // number of sample points
341 
342  double **X = (double **)malloc(N * sizeof(double *));
343  int *Y = (int *)malloc(N * sizeof(int)); // corresponding y-values
344  for (int i = 0; i < N; i++) X[i] = (double *)malloc(6 * sizeof(double));
345 
346  // generate sample points in the interval
347  // [-range2/100 , (range2-1)/100]
348  int range = 200; // sample points full-range
349  int range2 = range >> 1; // sample points half-range
350  for (int i = 0; i < N; i++)
351  {
352  double x0 = ((rand() % range) - range2) / 100.f;
353  double x1 = ((rand() % range) - range2) / 100.f;
354  double x2 = ((rand() % range) - range2) / 100.f;
355  X[i][0] = x0;
356  X[i][1] = x1;
357  X[i][2] = x2;
358  X[i][3] = x0 * x0;
359  X[i][4] = x1 * x1;
360  X[i][5] = x2 * x2;
361  Y[i] = (x0 * x0 + x1 * x1 + x2 * x2) <= 1 ? 1 : -1;
362  }
363 
364  printf("------- Test 3 -------\n");
365  printf("Model before fit: %s", adaline_get_weights_str(&ada));
366 
367  adaline_fit(&ada, X, Y, N);
368  printf("Model after fit: %s\n", adaline_get_weights_str(&ada));
369 
370  int N_test_cases = 5;
371  double test_x[6];
372  for (int i = 0; i < N_test_cases; i++)
373  {
374  double x0 = ((rand() % range) - range2) / 100.f;
375  double x1 = ((rand() % range) - range2) / 100.f;
376  double x2 = ((rand() % range) - range2) / 100.f;
377  test_x[0] = x0;
378  test_x[1] = x1;
379  test_x[2] = x2;
380  test_x[3] = x0 * x0;
381  test_x[4] = x1 * x1;
382  test_x[5] = x2 * x2;
383  int pred = adaline_predict(&ada, test_x, NULL);
384  printf("Predict for x=(% 3.2f,% 3.2f): % d", x0, x1, pred);
385 
386  int expected_val = (x0 * x0 + x1 * x1 + x2 * x2) <= 1 ? 1 : -1;
387  assert(pred == expected_val);
388  printf(" ...passed\n");
389  }
390 
391  for (int i = 0; i < N; i++) free(X[i]);
392  free(X);
393  free(Y);
394  delete_adaline(&ada);
395 }
Here is the call graph for this function: