/** * \file * \brief [Problem 15](https://projecteuler.net/problem=15) solution * \author [Krishna Vedala](https://github.com/kvedala) */ #include #include #include /** * At every node, there are 2 possible ways to move -> down or right. * Since it is a square grid, there are in all, 2N steps with N down * and N right options, without preference for order. * Hence, the path can be be traced in N out of 2N number of ways. * This is the same as binomial coeeficient. */ unsigned long long number_of_paths(int N) { unsigned long long path = 1; for (int i = 0; i < N; i++) { path *= (N << 1) - i; path /= i + 1; } return path; } /** Main function */ int main(int argc, char **argv) { int N = 20; if (argc == 2) N = atoi(argv[1]); printf("Number of ways to traverse diagonal of %dx%d grid = %llu\n", N, N, number_of_paths(N)); return 0; }