Algorithms_in_C  1.0.0
Set of algorithms implemented in C.
qr_decompose.h
Go to the documentation of this file.
1 /**
2  * @file
3  * \brief Library functions to compute [QR
4  * decomposition](https://en.wikipedia.org/wiki/QR_decomposition) of a given
5  * matrix.
6  * \author [Krishna Vedala](https://github.com/kvedala)
7  */
8 
9 #ifndef QR_DECOMPOSE_H
10 #define QR_DECOMPOSE_H
11 
12 #include <math.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #ifdef _OPENMP
16 #include <omp.h>
17 #endif
18 
19 /**
20  * function to display matrix on stdout
21  */
22 void print_matrix(double **A, /**< matrix to print */
23  int M, /**< number of rows of matrix */
24  int N) /**< number of columns of matrix */
25 {
26  for (int row = 0; row < M; row++)
27  {
28  for (int col = 0; col < N; col++) printf("% 9.3g\t", A[row][col]);
29  putchar('\n');
30  }
31  putchar('\n');
32 }
33 
34 /**
35  * Compute dot product of two vectors of equal lengths
36  *
37  * If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ and
38  * \f$\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\f$ then
39  * \f$\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\f$
40  *
41  * \returns \f$\vec{a}\cdot\vec{b}\f$
42  */
43 double vector_dot(double *a, double *b, int L)
44 {
45  double mag = 0.f;
46  int i;
47 #ifdef _OPENMP
48 // parallelize on threads
49 #pragma omp parallel for reduction(+ : mag)
50 #endif
51  for (i = 0; i < L; i++) mag += a[i] * b[i];
52 
53  return mag;
54 }
55 
56 /**
57  * Compute magnitude of vector.
58  *
59  * If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ then
60  * \f$\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\f$
61  *
62  * \returns \f$\left|\vec{a}\right|\f$
63  */
64 double vector_mag(double *vector, int L)
65 {
66  double dot = vector_dot(vector, vector, L);
67  return sqrt(dot);
68 }
69 
70 /**
71  * Compute projection of vector \f$\vec{a}\f$ on \f$\vec{b}\f$ defined as
72  * \f[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\f]
73  *
74  * \returns NULL if error, otherwise pointer to output
75  */
76 double *vector_proj(double *a, double *b, double *out, int L)
77 {
78  const double num = vector_dot(a, b, L);
79  const double deno = vector_dot(b, b, L);
80  if (deno == 0) /*! check for division by zero */
81  return NULL;
82 
83  const double scalar = num / deno;
84  int i;
85 #ifdef _OPENMP
86 // parallelize on threads
87 #pragma omp for
88 #endif
89  for (i = 0; i < L; i++) out[i] = scalar * b[i];
90 
91  return out;
92 }
93 
94 /**
95  * Compute vector subtraction
96  *
97  * \f$\vec{c}=\vec{a}-\vec{b}\f$
98  *
99  * \returns pointer to output vector
100  */
101 double *vector_sub(double *a, /**< minuend */
102  double *b, /**< subtrahend */
103  double *out, /**< resultant vector */
104  int L /**< length of vectors */
105 )
106 {
107  int i;
108 #ifdef _OPENMP
109 // parallelize on threads
110 #pragma omp for
111 #endif
112  for (i = 0; i < L; i++) out[i] = a[i] - b[i];
113 
114  return out;
115 }
116 
117 /**
118  * Decompose matrix \f$A\f$ using [Gram-Schmidt
119  *process](https://en.wikipedia.org/wiki/QR_decomposition).
120  *
121  * \f{eqnarray*}{
122  * \text{given that}\quad A &=&
123  *\left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\
124  * \text{where}\quad\mathbf{a}_i &=&
125  *\left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column
126  *vectors)}\\
127  * \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i
128  *-\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\
129  * \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\
130  * Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots &
131  *\mathbf{e}_{N-1}\end{bmatrix}\\
132  * R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle &
133  *\langle\mathbf{e}_1\,,\mathbf{a}_1\rangle &
134  *\langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\
135  * 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle &
136  *\langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
137  * 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
138  * \vdots & \vdots & \vdots & \ddots
139  * \end{bmatrix}\\
140  * \f}
141  */
142 void qr_decompose(double **A, /**< input matrix to decompose */
143  double **Q, /**< output decomposed matrix */
144  double **R, /**< output decomposed matrix */
145  int M, /**< number of rows of matrix A */
146  int N /**< number of columns of matrix A */
147 )
148 {
149  double *col_vector = (double *)malloc(M * sizeof(double));
150  double *col_vector2 = (double *)malloc(M * sizeof(double));
151  double *tmp_vector = (double *)malloc(M * sizeof(double));
152  for (int i = 0; i < N;
153  i++) /* for each column => R is a square matrix of NxN */
154  {
155  int j;
156 #ifdef _OPENMP
157 // parallelize on threads
158 #pragma omp for
159 #endif
160  for (j = 0; j < i; j++) /* second dimension of column */
161  R[i][j] = 0.; /* make R upper triangular */
162 
163  /* get corresponding Q vector */
164 #ifdef _OPENMP
165 // parallelize on threads
166 #pragma omp for
167 #endif
168  for (j = 0; j < M; j++)
169  {
170  tmp_vector[j] = A[j][i]; /* accumulator for uk */
171  col_vector[j] = A[j][i];
172  }
173  for (j = 0; j < i; j++)
174  {
175  for (int k = 0; k < M; k++) col_vector2[k] = Q[k][j];
176  vector_proj(col_vector, col_vector2, col_vector2, M);
177  vector_sub(tmp_vector, col_vector2, tmp_vector, M);
178  }
179  double mag = vector_mag(tmp_vector, M);
180 
181 #ifdef _OPENMP
182 // parallelize on threads
183 #pragma omp for
184 #endif
185  for (j = 0; j < M; j++) Q[j][i] = tmp_vector[j] / mag;
186 
187  /* compute upper triangular values of R */
188  for (int kk = 0; kk < M; kk++) col_vector[kk] = Q[kk][i];
189  for (int k = i; k < N; k++)
190  {
191  for (int kk = 0; kk < M; kk++) col_vector2[kk] = A[kk][k];
192  R[i][k] = vector_dot(col_vector, col_vector2, M);
193  }
194  }
195 
196  free(col_vector);
197  free(col_vector2);
198  free(tmp_vector);
199 }
200 
201 #endif // QR_DECOMPOSE_H
#define malloc(bytes)
This macro replace the standard malloc function with malloc_dbg.
Definition: malloc_dbg.h:18
#define free(ptr)
This macro replace the standard free function with free_dbg.
Definition: malloc_dbg.h:26
double vector_dot(double *a, double *b, int L)
Compute dot product of two vectors of equal lengths.
Definition: qr_decompose.h:43
void qr_decompose(double **A, double **Q, double **R, int M, int N)
Decompose matrix using Gram-Schmidt process.
Definition: qr_decompose.h:142
double * vector_sub(double *a, double *b, double *out, int L)
Compute vector subtraction.
Definition: qr_decompose.h:101
double * vector_proj(double *a, double *b, double *out, int L)
Compute projection of vector on defined as.
Definition: qr_decompose.h:76
void print_matrix(double **A, int M, int N)
function to display matrix on stdout
Definition: qr_decompose.h:22
double vector_mag(double *vector, int L)
Compute magnitude of vector.
Definition: qr_decompose.h:64
Definition: list.h:8