/** * \file * \brief Compute statistics for data entered in rreal-time * * This algorithm is really beneficial to compute statistics on data read in * realtime. For example, devices reading biometrics data. The algorithm is * simple enough to be easily implemented in an embedded system. */ #include #include #include /** * continuous mean and variance computance using * first value as an approximation for the mean. * If the first number is much far form the mean, the algorithm becomes very * inaccurate to compute variance and standard deviation. * \param[in] x new value added to data set * \param[out] mean if not NULL, mean returns mean of data set * \param[out] variance if not NULL, mean returns variance of data set * \param[out] std if not NULL, mean returns standard deviation of data set */ void stats_computer1(float x, float *mean, float *variance, float *std) { /* following variables declared static becuase they need to be remembered * when updating for next sample, when received. */ static unsigned int n = 0; static float Ex = 0.f, Ex2 = 0.f; static float K = 0.f; if (n == 0) K = x; n++; float tmp = x - K; Ex += tmp; Ex2 += tmp * tmp; /* return sample mean computed till last sample */ if (mean != NULL) *mean = K + Ex / n; /* return data variance computed till last sample */ if (variance != NULL) *variance = (Ex2 - (Ex * Ex) / n) / (n - 1); /* return sample standard deviation computed till last sample */ if (std != NULL) *std = sqrtf(*variance); } /** * continuous mean and variance computance using * Welford's algorithm (very accurate) * \param[in] x new value added to data set * \param[out] mean if not NULL, mean returns mean of data set * \param[out] variance if not NULL, mean returns variance of data set * \param[out] std if not NULL, mean returns standard deviation of data set */ void stats_computer2(float x, float *mean, float *variance, float *std) { /* following variables declared static becuase they need to be remembered * when updating for next sample, when received. */ static unsigned int n = 0; static float mu = 0, M = 0; n++; float delta = x - mu; mu += delta / n; float delta2 = x - mu; M += delta * delta2; /* return sample mean computed till last sample */ if (mean != NULL) *mean = mu; /* return data variance computed till last sample */ if (variance != NULL) *variance = M / n; /* return sample standard deviation computed till last sample */ if (std != NULL) *std = sqrtf(*variance); } /** Test the algorithm implementation * \param[in] test_data array of data to test the algorithms * \param[in] number_of_samples number of samples of data */ void test_function(const float *test_data, const int number_of_samples) { float ref_mean = 0.f, ref_variance = 0.f; float s1_mean = 0.f, s1_variance = 0.f, s1_std = 0.f; float s2_mean = 0.f, s2_variance = 0.f, s2_std = 0.f; for (int i = 0; i < number_of_samples; i++) { stats_computer1(test_data[i], &s1_mean, &s1_variance, &s1_std); stats_computer2(test_data[i], &s2_mean, &s2_variance, &s2_std); ref_mean += test_data[i]; } ref_mean /= number_of_samples; for (int i = 0; i < number_of_samples; i++) { float temp = test_data[i] - ref_mean; ref_variance += temp * temp; } ref_variance /= number_of_samples; printf("<<<<<<<< Test Function >>>>>>>>\n"); printf("Expected: Mean: %.4f\t Variance: %.4f\n", ref_mean, ref_variance); printf("\tMethod 1:\tMean: %.4f\t Variance: %.4f\t Std: %.4f\n", s1_mean, s1_variance, s1_std); printf("\tMethod 2:\tMean: %.4f\t Variance: %.4f\t Std: %.4f\n", s2_mean, s2_variance, s2_std); assert(fabs(s1_mean - ref_mean) < 0.01); assert(fabs(s2_mean - ref_mean) < 0.01); assert(fabs(s2_variance - ref_variance) < 0.01); printf("(Tests passed)\n\n"); } /** Main function */ int main(int argc, char **argv) { const float test_data1[] = {3, 4, 5, -1.4, -3.6, 1.9, 1.}; test_function(test_data1, sizeof(test_data1) / sizeof(test_data1[0])); float s1_mean = 0.f, s1_variance = 0.f, s1_std = 0.f; float s2_mean = 0.f, s2_variance = 0.f, s2_std = 0.f; printf("Enter data. Any non-numeric data will terminate the data input.\n"); while (1) { float val; printf("Enter number: "); // check for failure to read input. Happens for // non-numeric data if (!scanf("%f", &val)) break; stats_computer1(val, &s1_mean, &s1_variance, &s1_std); stats_computer2(val, &s2_mean, &s2_variance, &s2_std); printf("\tMethod 1:\tMean: %.4f\t Variance: %.4f\t Std: %.4f\n", s1_mean, s1_variance, s1_std); printf("\tMethod 2:\tMean: %.4f\t Variance: %.4f\t Std: %.4f\n", s2_mean, s2_variance, s2_std); } return 0; }