mirror of
https://github.moeyy.xyz/https://github.com/TheAlgorithms/C.git
synced 2023-10-11 15:56:24 +08:00
225 lines
6.6 KiB
C
225 lines
6.6 KiB
C
/**
|
|
* @file
|
|
* Program to compute the QR decomposition of a
|
|
* given matrix.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <function_timer.h>
|
|
|
|
/**
|
|
* function to display matrix on stdout
|
|
*/
|
|
void print_matrix(double **A, /**< matrix to print */
|
|
int M, /**< number of rows of matrix */
|
|
int N) /**< number of columns of matrix */
|
|
{
|
|
for (int row = 0; row < M; row++)
|
|
{
|
|
for (int col = 0; col < N; col++)
|
|
printf("% 9.3g\t", A[row][col]);
|
|
putchar('\n');
|
|
}
|
|
putchar('\n');
|
|
}
|
|
|
|
/**
|
|
* Compute dot product of two vectors of equal lengths
|
|
*
|
|
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ and
|
|
* \f$\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\f$ then
|
|
* \f$\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\f$
|
|
*
|
|
* \returns \f$\vec{a}\cdot\vec{b}\f$
|
|
**/
|
|
double vector_dot(double *a, double *b, int L)
|
|
{
|
|
double mag = 0.f;
|
|
for (int i = 0; i < L; i++)
|
|
mag += a[i] * b[i];
|
|
|
|
return mag;
|
|
}
|
|
|
|
/**
|
|
* Compute magnitude of vector.
|
|
*
|
|
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ then
|
|
* \f$\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\f$
|
|
*
|
|
* \returns \f$\left|\vec{a}\right|\f$
|
|
**/
|
|
double vector_mag(double *vector, int L)
|
|
{
|
|
double dot = vector_dot(vector, vector, L);
|
|
return sqrt(dot);
|
|
}
|
|
|
|
/**
|
|
* Compute projection of vector \f$\vec{a}\f$ on \f$\vec{b}\f$ defined as
|
|
* \f[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\f]
|
|
*
|
|
* \returns NULL if error, otherwise pointer to output
|
|
**/
|
|
double *vector_proj(double *a, double *b, double *out, int L)
|
|
{
|
|
const double num = vector_dot(a, b, L);
|
|
const double deno = vector_dot(b, b, L);
|
|
if (deno == 0) /*! check for division by zero */
|
|
return NULL;
|
|
|
|
const double scalar = num / deno;
|
|
for (int i = 0; i < L; i++)
|
|
out[i] = scalar * b[i];
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Compute vector subtraction
|
|
*
|
|
* \f$\vec{c}=\vec{a}-\vec{b}\f$
|
|
*
|
|
* \returns pointer to output vector
|
|
**/
|
|
double *vector_sub(double *a, /**< minuend */
|
|
double *b, /**< subtrahend */
|
|
double *out, /**< resultant vector */
|
|
int L /**< length of vectors */
|
|
)
|
|
{
|
|
for (int i = 0; i < L; i++)
|
|
out[i] = a[i] - b[i];
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Decompose matrix \f$A\f$ using [Gram-Schmidt process](https://en.wikipedia.org/wiki/QR_decomposition).
|
|
*
|
|
* \f{eqnarray*}{
|
|
* \text{given that}\quad A &=& \left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\
|
|
* \text{where}\quad\mathbf{a}_i &=& \left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column vectors)}\\
|
|
* \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i -\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\
|
|
* \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\
|
|
* Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_{N-1}\end{bmatrix}\\
|
|
* R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\
|
|
* 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
|
|
* 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
|
|
* \vdots & \vdots & \vdots & \ddots
|
|
* \end{bmatrix}\\
|
|
* \f}
|
|
**/
|
|
void qr_decompose(double **A, /**< input matrix to decompose */
|
|
double **Q, /**< output decomposed matrix */
|
|
double **R, /**< output decomposed matrix */
|
|
int M, /**< number of rows of matrix A */
|
|
int N /**< number of columns of matrix A */
|
|
)
|
|
{
|
|
double *col_vector = (double *)malloc(M * sizeof(double));
|
|
double *col_vector2 = (double *)malloc(M * sizeof(double));
|
|
double *tmp_vector = (double *)malloc(M * sizeof(double));
|
|
for (int i = 0; i < N; i++) /* for each column => R is a square matrix of NxN */
|
|
{
|
|
for (int j = 0; j < i; j++) /* second dimension of column */
|
|
R[i][j] = 0.; /* make R upper triangular */
|
|
|
|
/* get corresponding Q vector */
|
|
for (int j = 0; j < M; j++)
|
|
{
|
|
tmp_vector[j] = A[j][i]; /* accumulator for uk */
|
|
col_vector[j] = A[j][i];
|
|
}
|
|
for (int j = 0; j < i; j++)
|
|
{
|
|
for (int k = 0; k < M; k++)
|
|
col_vector2[k] = Q[k][j];
|
|
vector_proj(col_vector, col_vector2, col_vector2, M);
|
|
vector_sub(tmp_vector, col_vector2, tmp_vector, M);
|
|
}
|
|
double mag = vector_mag(tmp_vector, M);
|
|
for (int j = 0; j < M; j++)
|
|
Q[j][i] = tmp_vector[j] / mag;
|
|
|
|
/* compute upper triangular values of R */
|
|
for (int kk = 0; kk < M; kk++)
|
|
col_vector[kk] = Q[kk][i];
|
|
for (int k = i; k < N; k++)
|
|
{
|
|
for (int kk = 0; kk < M; kk++)
|
|
col_vector2[kk] = A[kk][k];
|
|
R[i][k] = vector_dot(col_vector, col_vector2, M);
|
|
}
|
|
}
|
|
|
|
free(col_vector);
|
|
free(col_vector2);
|
|
free(tmp_vector);
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
double **A;
|
|
unsigned int ROWS, COLUMNS;
|
|
|
|
printf("Enter the number of rows and columns: ");
|
|
scanf("%u %u", &ROWS, &COLUMNS);
|
|
if (ROWS < COLUMNS)
|
|
{
|
|
fprintf(stderr, "Number of rows must be greater than or equal to number of columns.\n");
|
|
return -1;
|
|
}
|
|
|
|
printf("Enter matrix elements row-wise:\n");
|
|
|
|
A = (double **)malloc(ROWS * sizeof(double *));
|
|
for (int i = 0; i < ROWS; i++)
|
|
A[i] = (double *)malloc(COLUMNS * sizeof(double));
|
|
|
|
for (int i = 0; i < ROWS; i++)
|
|
for (int j = 0; j < COLUMNS; j++)
|
|
scanf("%lf", &A[i][j]);
|
|
|
|
print_matrix(A, ROWS, COLUMNS);
|
|
|
|
double **R = (double **)malloc(sizeof(double *) * ROWS);
|
|
double **Q = (double **)malloc(sizeof(double *) * ROWS);
|
|
if (!Q || !R)
|
|
{
|
|
perror("Unable to allocate memory for Q & R!");
|
|
return -1;
|
|
}
|
|
for (int i = 0; i < ROWS; i++)
|
|
{
|
|
R[i] = (double *)malloc(sizeof(double) * COLUMNS);
|
|
Q[i] = (double *)malloc(sizeof(double) * ROWS);
|
|
if (!Q[i] || !R[i])
|
|
{
|
|
perror("Unable to allocate memory for Q & R.");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
function_timer *t1 = new_timer();
|
|
start_timer(t1);
|
|
qr_decompose(A, Q, R, ROWS, COLUMNS);
|
|
double dtime = end_timer_delete(t1);
|
|
|
|
print_matrix(R, ROWS, COLUMNS);
|
|
print_matrix(Q, ROWS, COLUMNS);
|
|
printf("Time taken to compute: %.4g sec\n", dtime);
|
|
|
|
for (int i = 0; i < ROWS; i++)
|
|
{
|
|
free(A[i]);
|
|
free(R[i]);
|
|
free(Q[i]);
|
|
}
|
|
free(A);
|
|
free(R);
|
|
free(Q);
|
|
return 0;
|
|
} |