mirror of
https://github.moeyy.xyz/https://github.com/TheAlgorithms/C.git
synced 2023-10-11 15:56:24 +08:00
194 lines
4.6 KiB
C
194 lines
4.6 KiB
C
/**
|
|
* \file
|
|
* \brief [Problem 23](https://projecteuler.net/problem=23) solution -
|
|
* optimization using look-up array
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*
|
|
* Optimization applied - compute & store abundant numbers once
|
|
* into a look-up array.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
long MAX_N = 28123; /**< Limit of numbers to check */
|
|
|
|
/**
|
|
* This is the global array to be used to store a flag to identify
|
|
* if a particular number is abundant (1) or not (0).
|
|
* Using a whole byte to store a binary info would be redundant.
|
|
* We will use each byte to represent 8 numbers by relying on bits.
|
|
* This saves memory required by 1/8
|
|
**/
|
|
char *abundant_flags = NULL;
|
|
|
|
/**
|
|
* Returns:
|
|
* -1 if N is deficient
|
|
* 1 if N is abundant
|
|
* 0 if N is perfect
|
|
**/
|
|
char get_perfect_number(unsigned long N)
|
|
{
|
|
unsigned long sum = 1;
|
|
char ret = 0;
|
|
|
|
for (unsigned long i = 2; i * i <= N; i++)
|
|
{
|
|
if (N % i == 0)
|
|
{
|
|
sum += i;
|
|
unsigned long tmp = N / i;
|
|
if (tmp != i)
|
|
sum += tmp;
|
|
}
|
|
}
|
|
|
|
ret = sum == N ? 0 : (sum > N ? 1 : -1);
|
|
#ifdef DEBUG
|
|
printf("%5lu: %5lu : %d\n", N, sum, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Is the given number an abundant number (1) or not (0)
|
|
**/
|
|
char is_abundant(unsigned long N)
|
|
{
|
|
// return abundant_flags[N >> 3] & (1 << N % 8) ? 1 : 0;
|
|
return abundant_flags[N >> 3] & (1 << (N & 7))
|
|
? 1
|
|
: 0; /* optimized modulo operation */
|
|
}
|
|
|
|
/**
|
|
* Find the next abundant number after N and not including N
|
|
**/
|
|
unsigned long get_next_abundant(unsigned long N)
|
|
{
|
|
unsigned long i;
|
|
/* keep checking successive numbers till an abundant number is found */
|
|
for (i = N + 1; !is_abundant(i); ++i)
|
|
;
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* check if a given number can be represented as a sum
|
|
* of two abundant numbers.
|
|
* \returns 1 - if yes
|
|
* \returns 0 - if not
|
|
**/
|
|
char is_sum_of_abundant(unsigned long N)
|
|
{
|
|
/** optimized logic:
|
|
* i + j = N where both i and j should be abundant
|
|
* hence we can simply check for j = N - i as we loop through i
|
|
**/
|
|
for (unsigned long i = get_next_abundant(1); i <= (N >> 1);
|
|
i = get_next_abundant(i))
|
|
if (is_abundant(N - i))
|
|
{
|
|
#ifdef DEBUG
|
|
printf("\t%4lu + %4lu = %4lu\n", i, N - i, N);
|
|
#endif
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Main function */
|
|
int main(int argc, char **argv)
|
|
{
|
|
unsigned long sum = 0;
|
|
if (argc == 2)
|
|
MAX_N = strtoul(argv[1], NULL, 10);
|
|
|
|
/** byte array to store flags to identify abundant numbers
|
|
* the flags are identified by bits
|
|
**/
|
|
abundant_flags = (char *)calloc(MAX_N >> 3, 1);
|
|
if (!abundant_flags)
|
|
{
|
|
perror("Unable to allocate memoey!");
|
|
return -1;
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
printf("Using OpenMP parallleization with %d threads\n",
|
|
omp_get_max_threads());
|
|
#else
|
|
printf("Not using parallleization!\n");
|
|
#endif
|
|
|
|
clock_t start_time = clock();
|
|
|
|
/* Loop to set abundant flags */
|
|
long N;
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(runtime)
|
|
#endif
|
|
for (N = 1; N <= MAX_N; N++)
|
|
{
|
|
char ret = get_perfect_number(N);
|
|
if (ret == 1)
|
|
{
|
|
// int byte_offset = N % 8, index = N >> 3;
|
|
int byte_offset = N & 7, index = N >> 3;
|
|
#ifdef _OPENMP
|
|
#pragma omp critical
|
|
#endif
|
|
abundant_flags[index] |= ret << byte_offset;
|
|
}
|
|
// if (i % 100 == 0)
|
|
// printf("... %5lu: %8lu\r", i, sum);
|
|
}
|
|
|
|
clock_t end_time = clock();
|
|
double t1 = 1e3 * (end_time - start_time) / CLOCKS_PER_SEC;
|
|
printf("Time taken to get abundant numbers: %.4g ms\n", t1);
|
|
|
|
clock_t t2 = 0;
|
|
long i;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(runtime) reduction(+ : sum)
|
|
#endif
|
|
for (i = 1; i < MAX_N; i++)
|
|
{
|
|
clock_t start_time1 = clock();
|
|
if (!is_sum_of_abundant(i))
|
|
// #ifdef _OPENMP
|
|
// #pragma omp critical
|
|
// #endif
|
|
sum += i;
|
|
clock_t end_time1 = clock();
|
|
#ifdef _OPENMP
|
|
#pragma omp critical
|
|
#endif
|
|
t2 += end_time1 - start_time1;
|
|
|
|
printf("... %5lu: %8lu\r", i, sum);
|
|
if (i % 100 == 0)
|
|
fflush(stdout);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
putchar('\n');
|
|
#endif
|
|
double t22 = 1e3 * t2 / CLOCKS_PER_SEC;
|
|
printf("Time taken for final sum: %.4g ms\nTotal Time taken: %.4g ms\n",
|
|
t22, t1 + t22);
|
|
printf("Memory used: %lu bytes\n", MAX_N >> 3);
|
|
printf("Sum of numbers that cannot be represented as sum of two abundant "
|
|
"numbers : %lu\n",
|
|
sum);
|
|
|
|
free(abundant_flags);
|
|
|
|
return 0;
|
|
}
|