TheAlgorithms-C/numerical_methods/newton-raphson-root.c
2020-04-08 15:31:00 -04:00

68 lines
1.5 KiB
C

/***
* approximate solution for f(x) = 0
* given f(x) and f'(x)
**/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <limits.h>
#include <complex.h> /* requires minimum of C99 */
/**
* f(x)
*/
double complex function(double complex x)
{
return x * x - 3.; /* x^2 = 3 - solution is sqrt(3) */
// return x * x - 2.; /* x^2 = 2 - solution is sqrt(2) */
}
/**
* f'(x)
*/
double complex d_function(double complex x)
{
return 2. * x;
}
int main(int argc, char **argv)
{
const double accuracy = 1e-10;
double delta = 1;
double complex cdelta = 1;
/* initialize random seed: */
srand(time(NULL));
double complex root = (rand() % 100 - 50) + (random() % 100 - 50) * I;
unsigned long counter = 0;
while (delta > accuracy && counter < ULONG_MAX)
{
cdelta = function(root) / d_function(root);
root += -cdelta;
counter++;
delta = fabs(cabs(cdelta));
#if defined(DEBUG) || !defined(NDEBUG)
if (counter % 50 == 0)
{
double r = creal(root);
double c = cimag(root);
printf("Iter %5lu: Root: %4.4g%c%4.4gi\t\tdelta: %.4g\n", counter, r,
c >= 0 ? '+' : '-', c >= 0 ? c : -c, delta);
}
#endif
}
double r = creal(root);
double c = cimag(root);
printf("Iter %5lu: Root: %4.4g%c%4.4gi\t\tdelta: %.4g\n", counter, r,
c >= 0 ? '+' : '-', c >= 0 ? c : -c, delta);
return 0;
}