TheAlgorithms-Python/maths/greatest_common_divisor.py

78 lines
2.0 KiB
Python
Raw Permalink Normal View History

"""
2019-10-15 02:35:51 +08:00
Greatest Common Divisor.
Wikipedia reference: https://en.wikipedia.org/wiki/Greatest_common_divisor
gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b) by definition of divisibility
"""
def greatest_common_divisor(a: int, b: int) -> int:
"""
Calculate Greatest Common Divisor (GCD).
>>> greatest_common_divisor(24, 40)
8
>>> greatest_common_divisor(1, 1)
1
>>> greatest_common_divisor(1, 800)
1
>>> greatest_common_divisor(11, 37)
1
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(16, 4)
4
>>> greatest_common_divisor(-3, 9)
3
>>> greatest_common_divisor(9, -3)
3
>>> greatest_common_divisor(3, -9)
3
>>> greatest_common_divisor(-3, -9)
3
"""
return abs(b) if a == 0 else greatest_common_divisor(b % a, a)
def gcd_by_iterative(x: int, y: int) -> int:
"""
Below method is more memory efficient because it does not create additional
stack frames for recursive functions calls (as done in the above method).
>>> gcd_by_iterative(24, 40)
8
>>> greatest_common_divisor(24, 40) == gcd_by_iterative(24, 40)
True
>>> gcd_by_iterative(-3, -9)
3
>>> gcd_by_iterative(3, -9)
3
>>> gcd_by_iterative(1, -800)
1
>>> gcd_by_iterative(11, 37)
1
"""
while y: # --> when y=0 then loop will terminate and return x as final GCD.
x, y = y, x % y
return abs(x)
2018-10-19 20:48:28 +08:00
2018-10-19 20:48:28 +08:00
def main():
"""
Call Greatest Common Divisor function.
"""
2018-10-19 20:48:28 +08:00
try:
nums = input("Enter two integers separated by comma (,): ").split(",")
num_1 = int(nums[0])
num_2 = int(nums[1])
print(
f"greatest_common_divisor({num_1}, {num_2}) = "
f"{greatest_common_divisor(num_1, num_2)}"
)
print(f"By iterative gcd({num_1}, {num_2}) = {gcd_by_iterative(num_1, num_2)}")
2018-10-19 20:48:28 +08:00
except (IndexError, UnboundLocalError, ValueError):
print("Wrong input")
2018-10-19 20:48:28 +08:00
2019-10-05 13:14:13 +08:00
if __name__ == "__main__":
2018-10-19 20:48:28 +08:00
main()