2020-08-19 18:55:06 +08:00
|
|
|
"""
|
2020-10-08 16:27:07 +08:00
|
|
|
Pandigital prime
|
|
|
|
Problem 41: https://projecteuler.net/problem=41
|
|
|
|
|
2020-08-19 18:55:06 +08:00
|
|
|
We shall say that an n-digit number is pandigital if it makes use of all the digits
|
|
|
|
1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
|
|
|
|
What is the largest n-digit pandigital prime that exists?
|
|
|
|
|
|
|
|
All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3.
|
2020-10-08 16:27:07 +08:00
|
|
|
So we will check only 7 digit pandigital numbers to obtain the largest possible
|
2020-08-19 18:55:06 +08:00
|
|
|
pandigital prime.
|
|
|
|
"""
|
2020-10-08 16:27:07 +08:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2022-09-14 16:40:04 +08:00
|
|
|
import math
|
2020-10-08 16:27:07 +08:00
|
|
|
from itertools import permutations
|
2020-08-19 18:55:06 +08:00
|
|
|
|
|
|
|
|
2022-09-14 16:40:04 +08:00
|
|
|
def is_prime(number: int) -> bool:
|
|
|
|
"""Checks to see if a number is a prime in O(sqrt(n)).
|
|
|
|
|
|
|
|
A number is prime if it has exactly two factors: 1 and itself.
|
|
|
|
|
|
|
|
>>> is_prime(0)
|
2020-08-19 18:55:06 +08:00
|
|
|
False
|
2022-09-14 16:40:04 +08:00
|
|
|
>>> is_prime(1)
|
|
|
|
False
|
|
|
|
>>> is_prime(2)
|
2020-08-19 18:55:06 +08:00
|
|
|
True
|
2022-09-14 16:40:04 +08:00
|
|
|
>>> is_prime(3)
|
|
|
|
True
|
|
|
|
>>> is_prime(27)
|
|
|
|
False
|
2020-08-19 18:55:06 +08:00
|
|
|
>>> is_prime(87)
|
|
|
|
False
|
2022-09-14 16:40:04 +08:00
|
|
|
>>> is_prime(563)
|
|
|
|
True
|
|
|
|
>>> is_prime(2999)
|
|
|
|
True
|
|
|
|
>>> is_prime(67483)
|
|
|
|
False
|
2020-08-19 18:55:06 +08:00
|
|
|
"""
|
2022-09-14 16:40:04 +08:00
|
|
|
|
|
|
|
if 1 < number < 4:
|
|
|
|
# 2 and 3 are primes
|
|
|
|
return True
|
|
|
|
elif number < 2 or number % 2 == 0 or number % 3 == 0:
|
|
|
|
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
|
2020-08-19 18:55:06 +08:00
|
|
|
return False
|
2022-09-14 16:40:04 +08:00
|
|
|
|
|
|
|
# All primes number are in format of 6k +/- 1
|
|
|
|
for i in range(5, int(math.sqrt(number) + 1), 6):
|
|
|
|
if number % i == 0 or number % (i + 2) == 0:
|
2020-08-19 18:55:06 +08:00
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
2020-10-08 16:27:07 +08:00
|
|
|
def solution(n: int = 7) -> int:
|
2020-08-19 18:55:06 +08:00
|
|
|
"""
|
2020-10-08 16:27:07 +08:00
|
|
|
Returns the maximum pandigital prime number of length n.
|
|
|
|
If there are none, then it will return 0.
|
|
|
|
>>> solution(2)
|
|
|
|
0
|
|
|
|
>>> solution(4)
|
2020-08-19 18:55:06 +08:00
|
|
|
4231
|
2020-10-08 16:27:07 +08:00
|
|
|
>>> solution(7)
|
2020-08-19 18:55:06 +08:00
|
|
|
7652413
|
|
|
|
"""
|
|
|
|
pandigital_str = "".join(str(i) for i in range(1, n + 1))
|
|
|
|
perm_list = [int("".join(i)) for i in permutations(pandigital_str, n)]
|
2020-10-08 16:27:07 +08:00
|
|
|
pandigitals = [num for num in perm_list if is_prime(num)]
|
|
|
|
return max(pandigitals) if pandigitals else 0
|
2020-08-19 18:55:06 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2020-10-08 16:27:07 +08:00
|
|
|
print(f"{solution() = }")
|